Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3460-3467.doi: 10.13229/j.cnki.jdxbgxb.20230177

Previous Articles     Next Articles

Effect of thermo-mechanical processing parameters on dynamic recrystallization of 2.25Cr-lMo-0.25V Steel

Hong-ping AN(),Jian-guo WU   

  1. College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
  • Received:2023-02-28 Online:2024-12-01 Published:2025-01-24

Abstract:

Hot compression test for 2.25Cr-lMo-0.25V steel was carried out at the temperature of 950-1 200 ℃ and strain rate of 0.005-0.1 s-1 on Gleeble-1500D thermal simulator. Hot deformation behavior and dynamic recrystallization of this steel were systematically investigated. The flow stress and microstructure state were strongly depended on temperature and strain rate. The relationship between Zener-Hollomon parameter and the characteristic strain (critical strain and steady strain) was determined by linear fitting, and a dynamical recrystallization state diagram was established. The dynamical recrystallization kinematic equation of this steel and the model of complete dynamic recrystallization grain size were established based on experimental data and the stress-strain curves. The results could provide a theoretical basis for formulating reasonable hot working process.

Key words: metallic material, 2.25Cr-lMo-0.25V steel, processing parameters, dynamic recrystallization, hot compression

Fig.1

True stress strain curve under different deformation conditions"

Fig.2

Microstructure of the deformed specimens at strain rate 0.005 s-1and different deformation temperature"

Fig.3

Microstructure of the deformed specimens at temperature of 1 050 ℃ and different strain rate"

Fig.4

Peak stress fitting under different deformation conditions"

Fig.5

Dynamic recrystallization state diagram"

Fig.6

Relationship between work hardening rate and stress"

Fig.7

Comparisons between the experimental and the predicted dynamic recrystallized fractions"

1 曹晨思, 段红玲, 李雪龙. 2.25Cr-1Mo-0.25V 钢大型压力容器封头均质性研究[J]. 大型铸锻件,2022(1): 16-19.
Cao Chen-si, Duan Hong-ling, Li Xue-long. Study on the homogeneity of 2.25Cr-1Mo-0.25V hteel large pressure vessel head[J]. Heavy Casting and Forging, 2022(1):16-19.
2 侯敬超, 赵国昌, 庞辉勇, 等. 2.25Cr-1Mo-0.25V 钢148 mm厚板尾部分层缺陷分析及控制工艺[J]. 特殊钢, 2023, 44(2): 43-46.
Hou Jing-chao, Zhao Guo-chang, Pang Hui-yong, et al. Analysis on causes of delamination defect at 148 mm heavy thick-ness plate tail of 2.25Cr-1Mo-0.25V steel and control process[J]. Special Steel, 2023, 44(2): 43-46.
3 陈学东, 范志超, 崔军, 等. 我国压力容器高性能制造技术进展[J]. 压力容器, 2021, 38(10): 1-15.
Chen Xue-dong, Fan Zhi-chao, Cui Jun, et al. Progress in high-performance manufacturing technology for pressure vessels in China[J]. Pressure Vessel Technology, 2021, 38(10): 1-15.
4 张子平, 吴晓俣, 王常青, 等. 2.25Cr-1Mo-0.25V大型厚壁锻焊加氢反应器制造阶段典型质量问题解析[J]. 石油化工设备技术,2023, 44(1): 45-51.
Zhang Zi-ping, Wu Xiao-yu, Wang Chang-qing, et al. On typical quality problems of 2.25Cr-1Mo-0.25V heavy-wall forge welding hydrogenation reactor during manufacturing stage[J]. Petrochemical Equipment Technology, 2023, 44(1): 45-51.
5 邓林涛. 2.25Cr-1Mo-0.25V纯净钢的冶炼及效果[J]. 大型铸锻件, 2005(1): 1-6.
Deng Lin-tao.The smelting process and the effects of 2.25Cr-1Mo-0.25V pure steel[J]. Heavy Casting and Forging, 2005(1): 1-6.
6 方迁, 叶成立, 金杨, 等. 2.25Cr-1Mo-0.25V钢中B含量控制研究[J]. 大型铸锻件, 2021(1): 1-3.
Fang Qian, Ye Cheng-li, Jin Yang, et al. Study on content control of boron in 2.25Cr-1Mo-0.25V steel[J]. Heavy Casting and Forging, 2021(1): 1-3.
7 Zhang Y T, Han H B, Miao L D, et al. Quantitative carbide analysis using the rietveld method for 2.25Cr-1Mo-0.25V steel[J]. Materials Characterization, 2009, 60(9): 953-956.
8 马窦琴, 宋亚虎, 赵学谦, 等. 加氢锻件用2.25Cr-1Mo-0.25V钢的冲击韧性研究[J]. 材料科学与工程学报,2020, 38(4): 625-628.
Ma Dou-qin, Song Ya-hu, Zhao Xue-qian, et al. Research on impact toughness of 2.25Cr-1Mo-0.25V steel for hydrogenation forgings[J]. Journal of Materials Science& Engineering, 2020, 38(4): 625-628.
9 张景利, 付瑞东, 王纯宇, 等. 2.25Cr-1Mo-0.25V钢的热变形行为及其形变组织[J]. 塑性工程学报,2010, 17(3): 44-49.
Zhang Jing-li, Fu Rui-dong, Wang Chun-yu, et al. Hot deforming behaviors and microstructures of 2.25Cr-1Mo-0.25V steels[J]. Journal of Plasticity Engineering, 2010, 17(3): 44-49.
10 仲杨,秦晓波,郑志镇,等. 石化容器用2.25Cr-1Mo-0.25V钢的CMT电弧熔丝增材制造工艺及组织性能研究[J]. 中国机械工程,2022, 33(10): 1251-1259.
Zhong Yang, Qin Xiao-bo, Zheng Zhi-zhen, et al. Study on microstructure and mechanics properties of 2.25Cr-1Mo-0.25V steel fabricated by CMT wire ARC additive manufactureing for petrochemical vessels[J]. China Mechanical Engineering, 2022, 33(10): 1251-1259.
11 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. Oxford:ELSEVIER Ltd., 2004.
12 杨觉先. 金属塑性变形物理基础[M]. 北京:冶金工业出版社, 1988.
13 Faulkner R, Martin J. Dislocation theory for engineers: worked examples[M]. Oxford: The Alden Press, 2000.
14 崔忠圻.金属学与热处理[M]. 北京: 机械工业出版社, 1995.
15 Saadatkia S, Mirzadeh H, Cabrera J M. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels[J]. Materals Science and Engineering A, 2015, 636: 196-202.
16 Eiwahabi M, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: a comparative study[J]. Materals Science and Engineering A, 2003, 343(1/2): 116-125.
17 Mcqueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995, 53(1): 293-310.
18 Ebrahimi G R, Keshmiri H, Maldar A R, et al. Dynamic recrystallization behavior of 13%Cr martensitic stainless steel under hot working condition[J]. Journal of Materials Science and Technology, 2012, 28(5): 467-473.
19 Chen F, Cui Z S, Chen S J. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation, part I: dynamic recrystallization[J]. Materals. Science and Engineering A, 2011, 528(15): 5073-5080.
20 陈学文, 王继业, 杨喜晴, 等. Cr8合金钢热变形行为及位错密度演变规律[J].吉林大学学报: 工学版, 2020, 50(1): 91-99.
Chen Xue-wen, Wang Ji-ye, Yang Xi-qing, et al. Hot deformation behavior and dislocation density evolution regularity of Cr8 alloy[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 91-99.
[1] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[2] Xiao-hong LU,Jin-hui QIAO,Yu ZHOU,Chong MA,Guo-chuan SUI,Zhuo SUN. Research progress of temperature field in friction stir welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 1-17.
[3] Wei-min ZHUANG,En-ming WANG. Modeling and compression simulation of 3D solid aluminum foam with random cell wall thickness [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1777-1785.
[4] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[5] Yin-bao TIAN,Jun-qi SHEN,Sheng-sun HU,Jian GOU. Effect of EP/EN Balance on droplet transfer and weld formation of Al alloy by VP⁃CMT [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1663-1668.
[6] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[7] Xue-wen CHEN,Ji-ye WANG,Xi-qing YANG,Tao HUANG,Ke-xing SONG. Hot deformation behavior and dislocation density evolution regularity of Cr8 alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 91-99.
[8] Jin-guo WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Zhi-qiang WANG. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
[9] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[10] GUAN Qing-feng,ZHANG Fu-tao,PENG Tao,LYU Peng,LI Yao-jun,XU Liang,DING Zuo-jun. Hot deformation behavior of 9%Cr steel contained B and Co elements [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1799-1805.
[11] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[12] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[13] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[14] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[15] YANG Xiao-hong, HANG Wen-xian, QIN Shao-gang, LIU Yong-bing, LIU Li-ping. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding [J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .