Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1624-1633.doi: 10.13229/j.cnki.jdxbgxb.20220975

Previous Articles    

Correlation analysis of shield driving parameters and structural deformation prediction based on MK-LSTM algorithm

Cheng CHEN1(),Pei-xin SHI1(),Peng-jiao JIA1,2,Man-man DONG3   

  1. 1.School of Rail Transportation,Suzhou University,Suzhou 215006,China
    2.School of Resources & Civil Engineering,Northeastern University,Shenyang 110819,China
    3.Changshu Institute of Technology,Changshu 215506,China
  • Received:2022-07-31 Online:2024-06-01 Published:2024-07-23
  • Contact: Pei-xin SHI E-mail:20194046001@stu.suda.edu.cn;pxshi@suda.edu.cn

Abstract:

MIC-K-median-LSTM(MK-LSTM)algorithm was proposed to analyze the correlation of parameters and predict the structural deformation. Firstly, the improved MIC algorithm is developed to analyze the correlation between the different input parameters and structural deformation, then to preprocess the input parameters based on their correlation coefficients. The prediction accuracy and efficiency using different dimensions of input parameters are analyzed through the LSTM model and the optimal input parameter dimensions are selected. The results show that: The influence of the shield parameters on the existing structural deformation is larger than soil parameters; The MK algorithm can effectively reduce the computational complexity and the impact of noise in raw data and the data pre-process is beneficial to improve prediction accuracy; MK-LSTM algorithm can effectively predict the deformation law of the structure over time, considering the effect of the data dimension on the improvement of the prediction accuracy and the influence of the calculation efficiency, dimension pruning can be adopted in the actual engineering based on the parameter correlation.

Key words: shield tunnelling, machine learning, parameter dimension, parameter correlation, deformation

CLC Number: 

  • TU472

Fig.1

Flow chart of K-median algorithm"

Fig.2

Flow chart of MIC-K-median algorithm[17]"

Fig.3

Flow chart of MK-LSTM prediction model"

Fig.4

Layout diagram of the monitoring points (unit: m)"

Table 1

Parameters of the model"

参数隐藏层每层神经单元数量全连接层数量时间步长批量大小迭代次数激活函数优化器损失函数评价指标
数量/类型1层32个1层50100200ReluAdamMseMape

Fig.5

Heat map of correlation coefficient"

Fig.6

Curve graph of the Loss"

Table 2

Different dimensions of input parameters"

方案输入参数
1TRNP4VP2cφP3GP1F
2TRNP4VP2cφP3GP1
3TRNP4VP2cφP3G
4TRNP4VP2cφP3
5TRNP4VP2cφ
6TRNP4VP2c
7TRNP4VP2
8TRNP4V
9TRNP4
10TRN
11TR

Fig.7

Loss value of testing and validation data"

Fig.8

Prediction curve of different input parameters"

Fig.9

Model evaluation"

Table 3

Model evaluation"

指标方案1方案2方案3方案4方案5方案6方案7方案8方案9方案10方案11
MAE0.1110.1440.1570.1790.1890.2310.2740.2990.3540.4210.654
RMSE0.1120.1310.1640.1890.2020.2540.2970.3420.4170.5280.749
R20.9770.9460.9340.9220.9030.8720.8460.8020.7630.7210.618

Fig.10

Accuracy and time of different input parameters"

1 Wang L T, Yang X, Gong G F, et al. Pose and trajectory control of shield tunneling machine in complicated stratum[J]. Automation in Construction, 2018,93: 192-199.
2 Huo J, Xu Z, Meng Z, et al. Coupled modeling and dynamic characteristic of TBM cutterhead system under uncertain factors[J]. Mechanical Systems and Signal Processing, 2020, 140: No.106664.
3 崔国华, 王国强, 王继新, 等. 全断面盾构掘进机切削刀具的计算力学模型求解[J]. 吉林大学学报: 工学版, 2008, 38(): 139-143.
Cui Guo-hua, Wang Guo-qiang, Wang Ji-xin, et al. Cutting dynamic model for cutters of shield machine under soft soil[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(Sup.2): 139-143.
4 Deng K, Tang X, Wang L, et al. On the analysis of force transmission performance for the thrust systems of shield tunneling machines[C]∥International Conference on Intelligent Robotics and Applications.Berlin: Springer-Verlag, 2009.
5 朱合华, 丁文其, 乔亚飞, 等. 盾构隧道微扰动施工控制技术体系及其应用[J]. 岩土工程学报, 2014,36(11): 1983-1993.
Zhu He-hua, Ding Wen-qi, Qiao Ya-fei, et al. Micro-disturbed construction control technology system for shield driven tunnels and its application [J]. Chinese Journal of Geotechnical Engineering, 2014,36(11): 1983-1993.
6 张顶立, 曹利强, 房倩. 城市隧道施工的环境力学响应预测及动态控制[J]. 北京交通大学学报, 2021,45(4): 1-8.
Zhang Ding-li, Cao Li-qiang, Fang Qian. Environmental mechanical response prediction and in-process control of urban tunnel construction[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 1-8.
7 高利宏. 新建地铁穿越既有地铁引起结构变形预测[J]. 市政技术, 2020, 38(4): 146-148, 152.
Gao Li-hong. Prediction of structural deformation caused by a new subway crossing existing subway[J]. Journal of Municipal Technology, 2020, 38(4): 146-148, 152.
8 张成平, 张顶立, 王梦恕. 大断面隧道施工引起的上覆地铁隧道结构变形分析[J]. 岩土工程学报,2009, 31(5): 805-810.
Zhang Cheng-ping, Zhang Ding-li, Wang Meng-shu. Structural deformation of overlying subway tunnels induced by tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 805-810.
9 刘栋. 深度学习框架下时空关联的基坑变形预测方法研究[D]. 泰安: 山东农业大学水利土木工程学院,2022.
Liu Dong. Research on prediction method of foundation pit deformation based on spatio-temporal correlation under deep learning framework [D].Tai´an:College of Water Conservancy and Civil Engineering,Shandong Agricultural University, 2022.
10 李洛宾, 龚晓南, 甘晓露, 等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报,2020, 53(): 13-19.
Li Luo-bin, Gong Xiao-nan, Gan Xiao-lu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network [J]. China Civil Engineering Journal, 2020, 53(Sup.1): 13-19.
11 Chen R P, Zhang P, Kang X, et al. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods [J]. Soils and Foundations, 2019, 59(2): 284-295.
12 陈仁朋, 戴田, 张品, 等. 基于机器学习算法的盾构掘进地表沉降预测方法[J]. 湖南大学学报: 自然科学版, 2021, 48(7): 111-118.
Chen Ren-peng, Dai Tian, Zhang Pin, et al. Prediction method of tunneling-induced ground settlement using machine learning algorithms[J]. Journal of Hunan University(Natural Sciences), 2021, 48(7):111-118.
13 孙捷城, 王国富, 路林海, 等. 厚冲积地层盾构掘进参数设定及地表变形规律研究[J]. 防灾减灾工程学报, 2018, 38(3): 487-497.
Sun Jie-cheng, Wang Guo-fu, Lu Lin-hai, et al. Study on parameters setting of EPB shield driving and laws of surface deformation in thick alluvial clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 487-497.
14 周振梁, 谭忠盛, 李宗林, 等. 一种基于数据挖掘的掘进速度预测模型[J]. 应用基础与工程科学学报,2021, 29(5): 1201-1219.
Zhou Zhen-liang, Tan Zhong-sheng, Li Zong-lin, et al. A data mining based prediction model for penetration rate[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1201-1219.
15 裴浩东, 叶社保, 杨平, 等. 软土地层盾构掘进参数分析及掘进速度预测[J]. 郑州大学学报: 工学版, 2022, 11(26): 1-8.
Pei Hao-dong, Ye She-bao, Yang Ping, et al. Analysis of boring parameters of shield in soft soil strata and prediction of driving speed[J]. Journal of Zhengzhou University (Engineering Science), 2022, 11(26):1-8.
16 Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
17 邵福波. 最大信息系数改进算法及其在铁路事故分析中的应用[D]. 北京: 北京交通大学交通运输学院,2016.
Shao Fu-bo. The improved algorithm of the maximal information coefficient and its applications in railway accident analysis[D]. Beijing: School of Traffic and Tansportation, Beijing Jiaotong University, 2016.
18 Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms[M]. 3rd ed. Cambridge: MIT Press, 2009.
19 Zhang D M, Zhang J Z, Huang H W, et al. Machine learning-based prediction of soil compression modulus with application of 1D settlement[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(6): 430-444.
20 Shao H D, Zhao H W, Jiang H K, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems,2016, 119: 200-220.
21 Zhang W, Zhang R, Wu C, et al. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, 11(4): 1095-1106.
22 Koo T K, Li M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. Journal of Chiropractic Medicine, 2016,15(2): 155-163.
23 李增良. 基于MIC-LSTM的盾构施工地表变形动态预测[J]. 隧道建设, 2021, 41(2): 199-205.
LI Zeng-liang. Dynamic prediction of surface deformation induced by shield tunneling based on maximal information coefficient-long short-term memory[J]. Tunnel Construction, 2021, 41(2): 199-205.
24 Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets, Science,2011, 334(6062): 1518-1524.
[1] Zhen-yong DI,Xin-hui YANG. Characteristic distribution of inter story deformation of building structure after earthquake [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1377-1384.
[2] Shu-mei LOU,Yi-ming LI,Xin LI,Peng CHEN,Xue-feng BAI,Bao-jia CHENG. Thermal deformation behavior of graphene nanosheets reinforced 7075Al based on BP neural network and Arrhenius constitutive equation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1237-1245.
[3] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[4] Yi LI,Chen-yang LYU,Ji-cai LIANG,Ce LIANG. Section deformation analysis of irregular Y-shaped aluminum profile of multi-point stretch-bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 105-113.
[5] Zhong-liang FU,Xiao-qing CHEN,Wei REN,Yu YAO. Random K-nearest neighbor algorithm with learning process [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 209-220.
[6] Qing-tian GENG,Zhi LIU,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Prediction of soil moisture based on a deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2430-2436.
[7] Xiao ZHOU,Yi-jie LIANG,Zhong-xuan XI,Yu-tao WANG. Welding deformation and compensation method of B-pillar in body-in-white [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2212-2218.
[8] Zhe ZHANG,Wei FU,Jun-hui ZHANG,Chao HUANG. Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1790-1798.
[9] Qi-kai SUN,Nan ZHANG,Xiao LIU,Zi-ji ZHOU. Dynamic reduction coefficients of steel⁃concrete composite beam based on Timoshenko beam theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 488-495.
[10] Heng-yan PAN,Wen-hui ZHANG,Ting-ting LIANG,Zhi-peng PENG,Wei GAO,Yong-gang WANG. Inducement analysis of taxi drivers' traffic accidents based on MIMIC and machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 457-467.
[11] Wei YUAN,Xiao-hui YUAN,Yan GAO,Kun-chen LI,Deng-feng ZHAO,Zhao-hui LIU. Identification method for electric bus pedal misoperation based on natural driving data [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3342-3350.
[12] Ce LIANG,Fu-lei HUANG,Ji-cai LIANG,Yi LI. Numerical simulation on deformation of protective beam with “日”-shaped section during rotary draw bending [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3397-3403.
[13] Feng-feng ZHOU,Zhen-wei YAN. A model for identifying neuropeptides by feature selection based on hybrid features [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3238-3245.
[14] Li-zhao DAI,Liang ZHOU,Xiao-wen YANG,Lei WANG. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2886-2896.
[15] Qing-tian GENG,Yang ZHAO,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Integrated LSTM and ARIMA method based on attention model for soil temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2973-2981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!