Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1576-1587.doi: 10.13229/j.cnki.jdxbgxb.20240692

Previous Articles     Next Articles

Algorithm for adapting transportation capacity of mountainous scenic areas in festival based on highway traffic data

Sheng-yu YAN1(),Fu-hua WEN1,Jin WU1,Yi ZHENG2(),Shi-jie HAO1,Wen-bo YOU1   

  1. 1.School of Automobile,Chang'an University,Xi'an 710018,China
    2.Development of Big Data Resource,Yunnan Communications Investment & Construction Group Co. ,Ltd. ,Kunming 650032,China
  • Received:2024-06-21 Online:2025-05-01 Published:2025-07-18
  • Contact: Yi ZHENG E-mail:Leo9574@163.com;11403297@qq.com

Abstract:

To determine the transport capacity by mountain scenic spots to carry tourists during holidays, an adaptation method of scenic spot transport capacity based on short-term passenger flow forecast was proposed. Based on highway traffic data, the traffic flow was converted into passenger flow, and a CNN-LSTM hybrid model for short-term passenger flow prediction was proposed; Gaussian function was used to fit the discrete data of passenger flow forecast, and breadth-first search algorithm was used to obtain the departure frequency that fitted the passenger flow curve; The paper determined the reasonable constraint conditions of vehicle operation in mountain scenic spots, considering the key parameters such as departure frequency, the number of passengers carrying capacity and traveling tiem of the trip, a capacity adaptation model by deficit function was proposed. Taking Jinsixia scenic area as a case study, the models proposed were verified. The results show that the CNN-LSTM hybrid model can effectively predict the short-term passenger flow in mountain scenic spots, and the R2 of the model can reach 0.92 at the time granularity of 15 min. Compared with the traditional "full-passenger-ready-to-go" scheduling mode, the capacity adaptation model reduces the capacity demand from 57 to 28, effectively reducing the fleet supply. The research will be beneficial for short-term prediction of passenger flow in mountain scenic spots and accurate calculation of transportation capacity demand in holidays.

Key words: traffic engineering, toll collection data, adaptation of transportation capacity for scenic area, short-time passenger flow forecast, recurrent neural network, breadth-first search algorithm

CLC Number: 

  • U492.2

Fig.1

Passenger flow connection scene of the closed scenic area"

Table 1

Main field description of highway traffic data"

数据类型字段名称字符类型字段说明字段用途
高速公路收费数据入口站代码Varchar每个收费站对应的唯一数字ID精确定位客车驶入或驶出收费站位置及所属的高速公路编号
出口站代码Varchar
入口时间Datetime车辆驶入或驶出收费站的时间,精确到秒级精准确定客车驶入或驶出收费站的时间,可计算全程平均速度
出口时间Datetime
车型Varchar核定载客人数范围划分为区分客车车型,可分车型计算高速公路客流量
车牌号Varchar数据中识别车辆的唯一标识追踪行驶轨迹,确定客流来源,标记客车
国省道交通量观测数据观测时间段Datetime可将观测时间段缩小到短时预测级别可按每分钟统计国省道分车型车流量
车型Varchar分为小型客车(型)、大型客车(型)区分客车车型,可分车型计算国道、省道客流量
车流量计数Int记录短时时段内各车型车流量用于推算各车型客流量
行驶方向Varchar标记车辆单向行驶方向区分客车上行、下行方向

Fig.2

Structure of CNN-LSTM hybrid model"

Table 2

Distribution of seats capacity and average passenger in cube for holiday travel"

客车车型核定载客数/人平均座位数/座假期平均乘坐人数/人样本量/个
Ⅰ类9座及以下5.223.01466
Ⅱ类8~19座12.259.2069
Ⅲ类20~39座35.3229.7185
Ⅳ类40座及以上50.9742.3276

Fig.3

Algorithm for solving the departure schedule"

Fig.4

Train chain for solving algorithm"

Fig.5

Highway layout of Jinsi Xia Scenic Area"

Fig.6

Characteristics of traffic flow changes in Jinsixia Scenic Area in 2019"

Fig.7

Comparison of prediction effects of the three models"

Table 3

Comparison of prediction effects of the three models"

客流预测模型预测效果评价指标
RMSE/%R2
CNN34.640.14
LSTM20.140.34
CNN-LSTM18.860.46

Fig.8

Comparison of prediction effect of CNN-LSTM model"

Table 4

Comparison between LSTM and CNN-LSTM predictions"

模型RMSE/%R2程序运行时间/s
LSTM32.010.86120
CNN-LSTM29.120.92146

Fig.9

Forecast of the number of upstream and downstream passengers"

Fig.10

Information diagram for bus departure of upstream and downstream"

Fig.11

Gantt chart of vehicle operation under different scheduling modes"

Fig.12

Deficit function diagram of the station under full buses departing"

Fig.13

Deficit function diagram of the station with empty trains inserted"

[1] 孙九霞. 国内旅游业更新升级的新动向与新挑战[J]. 人民论坛, 2024(7): 94-98.
Sun Jiu-xia. New trends and challenges in the renewal and upgrading of the domestic tourism industry[J]. People's Tribune, 2024(7): 94-98.
[2] 闫晟煜, 王钊龙, 武瑾, 等.省域高速公路网车辆碳排放量测算方法[J]. 中国环境科学, 2024, 44(12): 7095-7104.
Yan Sheng-yu, Wang Zhao-long, Wu Jin, et al. Estimation model of vehicle carbon emission for provincial expressway networks[J]. China Environmental Science, 2024, 44(12): 7095-7104.
[3] Song H Y, Richard T Q, Jinah P. Review of research on tourism demand forecasting: launching the annals of tourism research curated collection on tourism demand forecasting[J]. Journals of Tourism Research, 2019, 75: 338-362.
[4] Hu Y C. Predicting foreign tourists for the tourism industry using soft computing-based Grey-Markov models[J]. Sustainability, 2017, 9(7): 1-12.
[5] Li S W, Chen T, Wang L, et al. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index[J]. Tourism Management, 2018, 68(10): 116-126.
[6] Sun S L, Wei Y J, Tsui K L, et al. Forecasting tourist arrivals with machine learning and internet search index[J]. Tourism Management, 2019, 70(2): 1-10.
[7] Bi J W, Liu Y, Li H, et al. Daily tourism volume forecasting for tourist attractions[J]. Annals of Tourism Research, 2020, 83(3): No.102923.
[8] Bi J W, Li C X, Xu H, et al. Forecasting daily tourism demand for tourist attractions with big data: an ensemble deep learning method[J]. Journal of Travel Research, 2022, 61(8): 1719-1737.
[9] Han W, Li Y, Li Y, et al. A deep learning model based on multi-source data for daily tourist volume forecasting[J]. Current Issues in Tourism, 2024, 27(5): 768-786.
[10] 廖治学, 戈鹏, 任佩瑜, 等. 基于AB@G集成模型的九寨沟景区游客量预测研究[J].旅游学刊, 2013, 28(4): 88-93.
Liao Zhi-xue, Ge Peng, Ren Pei-yu, et al. Research on prediction of tourists quantity in Jiuzhai Valley based on AB@G integration model[J]. Tourism Science, 2013, 28 (4): 88-93.
[11] Mohd A, Wu J Z, Chakrabortty R K, et al. Attention-based STL-BiLSTM network to forecast tourist arrival[J]. Processes, 2021, 9(10): No.09101759.
[12] 《中国公路学报》编辑部. 中国公路交通学术研究综述2012[J].中国公路学报, 2012, 25(3): 2-50.
Editorial Department of China Journal of Highway and Transport. An academic research summary on china highway and transport: 2012[J]. China Journal of Highway and Transport, 2012, 25(3): 2-50.
[13] Ceder A, Helman I S. Deficit function bus scheduling with deadheading trip insertions for fleet size reduction[J]. Transportation Science, 1981, 11: 338-363.
[14] 刘涛, 尤海林. 基于人机协同决策的运输调度优化研究[J]. 交通运输系统工程与信息, 2024, 24(2): 136-148.
Liu Tao, You Hai-lin. Human-machine collaborative decision-making for transportation scheduling optimization [J].Journal of Transportation Systems Engineering and Information Technology, 2024, 24(2): 136-148.
[15] 闫晟煜, 赵佳琪, 尤文博, 等. 高速公路货车差异化通行费折扣的双层规划模型[J/OL]. 清华大学学报:自然科学版,2025,
Yan Sheng-yu, Zhao Jia-qi, You Wen-bo, et al. Bi-level programming model for differential toll discounts for expressway trucks[J]. Journal of Tsinghua University (Science and Technology), 2025,
[16] 董强. 基于遗传算法的风景区电瓶摆渡车发车管理[J].佳木斯大学学报: 自然科学版, 2017, 35(3): 488-491.
Dong Qiang. The bus scheduling based on genetic algorithm[J]. Journal of Jiamusi University (Natural Science Edition), 2017, 35(3): 488-491.
[17] 张建华. 基于实时客流信息的快速公交车辆组合调度优化研究[D]. 成都: 西南交通大学交通运输与物流学院, 2013.
Zhang Jian-hua. Research on the optimization of combinational scheduling bat based on real-time passenger flow[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2013.
[18] 杨凤满. 基于人工神经网络的交通流预测方法综述[J].公路交通科技, 2020, 37():130-135.
Yang Feng-man. Review of traffic flow prediction methods based on artificial neural network[J]. Journal of Highway and Transportation Research and Development, 2020, 37(Sup.1): 130-135.
[19] 陈晓雷, 孙永峰, 李策, 等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 296-309.
Chen Xiao-lei, Sun Yong-feng, Li Ce, et al. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[20] Yang D, Chen K R, Yang M N, et al. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features[J]. IET Intelligent Transport Systems, 2019, 13(10): 1475-1482.
[21] 苏恩杰, 叶飞, 何乔, 等. 基于卷积神经网络-长短期记忆的施工期盾构管片上浮过程预测模型[J]. 同济大学学报: 自然科学版, 2023, 51(9): 1352-1361.
Su En-jie, Ye Fei, He Qiao, et al. Prediction model of shield segment floating process during construction based on convolutional neural networks and long short-term memory[J]. Journal of Tongji University(Natural Science), 2023, 51(9): 1352-1361.
[22] 戢晓峰, 孔晓丽, 陈方, 等. 基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型[J]. 交通信息与安全, 2023, 41(3): 166-174.
Ji Xiao-feng, Kong Xiao-li, Chen Fang, et al. A forecasting model of short-term traffic flow on expressways during holidays based on ETC data and A-BiLSTM neural network models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174.
[23] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204.
Zhao Yang-yang, Xia Liang, Jiang Xin-guo. Short-term metro passenger flow predication based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204.
[24] Cao Z C, Ceder A A. Autonomous shuttle bus service timetabling and vehicle scheduling using skip-stop tactic[J]. Transportation Research Part C: Emerging Technologies, 2019, 102(5): 370-395.
[25] 范厚明, 田攀俊, 吕迎春, 等. 越库配送下考虑时空距离的库门分配与车辆调度优化[J]. 中国管理科学, 2022, 30(2):137-149.
Fan Hou-ming, Tian Pan-jun, Ying-chun Lyu, et al. Cross-dock door assignment and vehicle routing problem of considering temporal-spatial distance[J]. Chinese Journal of Management Science, 2022, 30(2): 137-149.
[26] 李翠玉, 胡雅梦, 康亚伟, 等. 应用自适应遗传算法的电动汽车充放电协同调度[J]. 吉林大学学报: 工学版, 2022, 52(11): 2508-2513.
Li Cui-yu, Hu Ya-meng, Kang Ya-wei, et al. Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2508-2513.
[1] Hua-zhen FANG,Li LIU,Qing GU,Xiao-feng XIAO,Yu MENG. Driving intention recognition based on trajectory prediction and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 623-630.
[2] Huai-xin LI,Chang-gen YAN,Bin LIN,Yu-ling SHI. Strength and statistical damage model in whole process of clay-concrete combined body [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 245-255.
[3] Rong-han YAO,Wen-yan QI,Hong-yu HU,Xiao-jing DU,Yan-feng QIAO,Li-bing WANG. Multi-lane cellular automata model considering bus-high occupancy vehicle lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 162-174.
[4] Rong-gui ZHOU,Pei GAO,Yu-xuan LI,Jian ZHOU. Abnormal driving behavior thresholds of highway minibuses based on trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2581-2587.
[5] Yun PU,Yin XU,Hai-xu LIU,Yi-fan TAN. An improved car⁃following model for connected and automated vehicles considering impact of multiple vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1285-1292.
[6] Qing-lu MA,Hao YAN,Zhen-yu NIE,Yang-mei LI. Cooperative control method for intelligent networked vehicles in ramp confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1332-1346.
[7] Qian CAO,Zhi-hui LI,Peng-fei TAO,Hai-tao LI,Yong-jian MA. Deployment of heterogeneous sensors for traffic accident detection and prevention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 969-978.
[8] Xin ZHANG,Qi-zhou HU,Jun HE,Xiao-yu WU. Traffic condition diagnosis of confluence areas considering traffic infarction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 478-484.
[9] Wei-hua ZHANG,Jia-ming LIU,Li-peng XIE,Heng DING. Lane⁃changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 469-477.
[10] Hui SONG,Da-yi QU,Shao-jie WANG,Tao WANG,Zi-yi YANG. Connected mixed traffic flow car-following model and stability analysis considering multiple vehicles response [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3220-3230.
[11] Yi-yong PAN,Jing-ting WU,Xuan-ye Miao. Temporal instability analysis of factors affecting injury severities of elderly drivers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2819-2826.
[12] Hui-ying WEN,Zi-qi HE,Qiu-ling LI,Sheng ZHAO. Traffic conflict prediction and influencing factors analysis of truck lane change on expressway [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2827-2836.
[13] Hao YUE,Qi-yue ZHANG,Zi-yu YANG,Meng-jie REN,Xu ZHANG. Iterative weighted algorithms of static congestion traffic assignment considering spatial queuing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 136-145.
[14] Xiao-jing DU,Rong-han YAO. Evolutionary game mechanism of mandatory lane changing for exiting for intelligent connected bus [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 124-135.
[15] Zhuang-lin MA,Shan-shan CUI,Da-wei HU,Jin WANG. Travel mode choice of traditional car travelers after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1981-1993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. 吉林大学学报(工学版), 2007, 37(06): 0 .
[2] Wang Fu-yu,Sha Qing-lin,Zhang Yong,Dai Wen-ting . Application of aggregate gradation test methods of VCADRF and VCAAC for SAC13[J]. 吉林大学学报(工学版), 2007, 37(03): 538 -0543 .
[3] OUYANG Ji-hong, FU Qian, LIU Da-you . Improved method of qualitative shape representation
for SameSide distinction of concavities
[J]. 吉林大学学报(工学版), 2009, 39(02): 413 -0418 .
[4] LU Guang-lin, QIU Xiao-ming, BAI Yang, LUN Xin-jie|DENG Bao-qing,REN Lu-qu. Microstructure and performance of c-BN bionic wearresistant composites[J]. 吉林大学学报(工学版), 2011, 41(01): 73 -0077 .
[5] Xu Si-chuan,Li Rong-qing,Cheng Qin,Guo Ying-nan,Zhang Ji-peng,Sun Ji-mei,Wang Yong-fu . Influence of boundary condition on combustion of ethanol HCCI engine[J]. 吉林大学学报(工学版), 2007, 37(01): 74 -78 .
[6] WANG Dian-hai,QI Hong-sheng. Road travel time under signal control[J]. 吉林大学学报(工学版), 2010, 40(03): 655 -0660 .
[7] MENG Guang-Wei, ZHOU Li-Ming, LI Feng, SHA Li-Rong. Perturbation stochastic local orthogonal elementfree Galerkin method[J]. 吉林大学学报(工学版), 2010, 40(06): 1556 -1561 .
[8] Shi Weiping,, Zu Yingqing. Kinetic flux vector splitting method for the dam breaking waves[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 62 -0065 .
[9] YU Lei,WEI Jun,TIAN Feng,LIU Jin-gao. Computer solution of static evaluation problems based on positional analysis and genetic algorithm[J]. 吉林大学学报(工学版), 2011, 41(6): 1694 -1698 .
[10] WANG Fang-rong, LIN Xiao-long, WANG Xiao-peng, ZHANG Jia-quan, ZHANG Tie-qiang, FENG Yi. Viscose filament real time detection system design and image processing algorithm[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 288 -291 .