吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 494-500.doi: 10.13229/j.cnki.jdxbgxb201502024

• Orignal Article • Previous Articles     Next Articles

Plasticity at elevated temperature and fracture character of 316LN steel

DUAN Xing-wang,LIU Jian-sheng   

  1. College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Received:2013-06-28 Online:2015-04-01 Published:2015-04-01

Abstract: Thermal-mechanical simulation tests of 316LN steel were carried out on Gleeble-1500D thermal-mechanical simulator with temperature in the range of 950 ~ 1200 ℃ and strain rates of 0.005, 0.05, 0.5 and 1 s-1. The fractures were observed using a Scanning Electron Microscope (SEM). The plasticity and fracture mechanism of 316LN steel at elevated temperature were studied. The results show that the fracture of 316LN steel at elevated temperature is ductile fracture. The size and depth of dimples increase with the temperature and strain rate. The plasticity also increases with temperature and strain rate. Meanwhile, the relationship models between fracture strain and deformation conditions (temperature and strain rate) and between plastic indexes (elongation and area reduction) and deformation conditions were established using regression method, respectively. Employing these models, the fracture strain, elongation and area reduction of 316LN steel under certain conditions can be calculated. This study provides reference to the design of forging technology of 316LN steel.

Key words: metallic material, plasticity at high temperature, thermal-mechanical simulation, 316LN steel , fracture mechanism

CLC Number: 

  • TG316.2
[1] 潘品李, 钟约先, 马庆贤,等. 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报,2011, 18(5): 13-18.
Pan Pin-li, Zhong Yue-xian, Ma Qing-xian, et al. Research on the dynamic recrystallization behavior of 316LN steel under multi-pass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18.
[2] 陈明明,何文武,刘艳光,等. 316LN奥氏体不锈钢亚动态再结晶行为的研究[J].锻压装备与制造技术,2010(4):83-86.
Chen Ming-ming, He Wen-wu, Liu Yan-guang, et al. Research on meta-dynamic recrystallization of 316LN austenitic stainless steel[J]. China Metal Forming Equipment & Manufacturing Technology, 2010(4): 83-86.
[3] Ganesan V, Ganesh Kumar J, Laha K, et al. Notch creep rupture strength of 316LN SS and its variation with nitrogen content[J]. Nuclear Engineering and Design, 2013, 254: 179-184.
[4] Zhang X Z, Zhang Y S, Li Y J, et al. Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation[J]. Materials Science and Engineering A, 2013, 559: 301-306.
[5] Schwartz J, Fandeur O, Rey C. Fatigue crack initiation modeling of 316LN steel based on non local plasticity theory[J]. Procedia Engineering, 2010,2(1):1353-1362.
[6] 康欢举,杨爽,孙华. 316LN的应力腐蚀开裂实验研究[J]. 核动力工程,2011, 32(6):101-104,114.
Kang Huan-ju, Yang Shuang, Sun Hua. Experimental study on stress corrosion cracking of 316LN[J]. Nuclear Power Engineering, 2011, 32(6):101-104,114.
[7] Kim H C, Kim K, Lee Y S, et al. Study on the weld characteristics of 316LN by magnetization measurement[J]. Journal of Nuclear Materials, 2009, 386-388: 650-653.
[8] Ozcelik B, Kuram E, Simsek B T. Comparison of dry and wet end milling of AISI 316 stainless steel[J]. Materials and Manufacturing Processes, 2011, 26(8):1041-1049.
[9] 张义帅,张秀芝,田香菊,等. 316LN不锈钢锻造开裂锻件组织与断口分析[J]. 锻压技术,2011, 36(6):1-3.
Zhang Yi-shuai, Zhang Xiu-zhi, Tian Xiang-ju, et al. Analysis of forging structure and fracture for 316LN stainless steel forging crack[J]. Forging and Stamping Technology, 2011, 36(6):1-3.
[10] He W W, Liu J S, Chen H Q, et al. Processing maps and microstructure evolution of 316LN stainless steel[J]. Advanced Science Letters, 2011,4(3): 1235-1239.
[11] 黑志刚,段兴旺,刘建生. 温度和应变速率对316LN钢高温性能的影响[J].太原科技大学学报,2012,33(4): 290-293.
Hei Zhi-gang, Duan Xing-wang, Liu Jian-sheng. Influence of temperature and strain rate on the high-temperature performances of 316LN steel[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(4): 290-293.
[12] 臧金鑫,陶乐晓,冯朝辉,等. 热变形参数对新型Al-Zn-Mg-Cu高强铝合金微观组织的影响[J]. 塑性工程学报,2011,18(5):38-42.
Zang Jin-xin, Tao Le-xiao, Feng Zhao-hui, et al. Influence of the deformation parameters on microstructures of a new Al-Zn-Mg-Cu high strength aluminum alloy[J]. Journal of Plasticity Engineering, 2011, 18(5): 38-42.
[13] 徐恒钧.材料科学基础[M]. 北京:北京工业大学出版社,2001:409.
[14] 张小立,庄传晶,吉玲康,等. 高钢级管线钢的有效晶粒尺寸[J]. 机械工程材料,2007, 31(3): 4-8.
Zhang Xiao-li, Zhuang Chuan-jing, Ji Ling-kang, et al. Effective particle size of high grade pipeline steels[J]. Materials for Mechanical Engineering, 2007, 31(3): 4-8.
[15] 朱宝辉,胡晓晨,吴孟海,等. TC1钛合金精锻棒材的拉伸性能及断口形貌[J]. 中国有色金属学报,2010,20(专辑1):144-147.
Zhu Bao-hui, Hu Xiao-chen, Wu Meng-hai, et al. Tensile properties and fractographs of finish forged bar of TC1 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Special 1): 144-147.
[16] 陈朝阳,章金晶,杭先霞,等. 锂离子电池用电解铜箔的断裂研究[J]. 电源技术,2010,34(5):442-445.
Chen Zhao-yang, Zhang Jin-jing, Hang Xian-xia, et al. Research of broken copper foil for Li-ion cell[J]. Chinese Journal of Power Sources, 2010, 34(5): 442-445.
[17] 李明,宋月清,崔舜,等. V5Cr5Ti合金的高温拉伸性能及其断口特征[J]. 稀有金属,2007,31(4):420-424.
Li Ming, Song Yue-qing, Cui Shun, et al. High temperature tensile properties and fracture character of V5Cr5Ti alloy[J]. Chinese Journal of Rare Metals, 2007, 31(4): 420-424.
[1] GUAN Qing-feng,ZHANG Fu-tao,PENG Tao,LYU Peng,LI Yao-jun,XU Liang,DING Zuo-jun. Hot deformation behavior of 9%Cr steel contained B and Co elements [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1799-1805.
[2] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[3] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[4] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[5] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[6] YANG Xiao-hong, HANG Wen-xian, QIN Shao-gang, LIU Yong-bing, LIU Li-ping. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding [J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[7] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[8] ZHANG Xue-guang, LIU Chun-guo, ZHENG Yuan, JIANG Zhong-hai, LI Xiang-ji. Forming limit prediction of aluminum alloy based on ductile damage and shear damage [J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[9] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[10] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[11] ZHANG Jia-tao, ZHAO Yu-guang, TAN Juan. Effect of starting microstructure on refining potency of electro-pulsing on reverse austenite grain [J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[12] GUAN Qing-feng, LI Yan, HOU Xiu-li, YANG Sheng-zhi, WANG Xiao-tong. Modification of solid solution Mg-Gd-Y-Nd alloy irradiated by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[13] MA Yun-hai, SHANG Wen-bo, FAN Xue-ying, GAO Zhi-hui, TONG Jin, YAN Zhi-feng, CHANG Zhi-yong. Preparation and degradation of porous β-tricalcium phosphate bioceramic for bone imitaion [J]. 吉林大学学报(工学版), 2015, 45(4): 1367-1374.
[14] GAO Song, LIANG Ji-cai, CHEN Guang-yi, WEI Zhi-yong, TENG Fei. Rapid adjusting of fundamental units in process of flexible 3D stretch-bending [J]. 吉林大学学报(工学版), 2014, 44(6): 1723-1728.
[15] YU Yan,ZHANG Xiao-meng,LIU Yun-xu. High cycle fatigue performance of TRIP automobile steel [J]. 吉林大学学报(工学版), 2014, 44(5): 1371-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!