吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1502-1511.doi: 10.13229/j.cnki.jdxbgxb201505019

Previous Articles     Next Articles

Trotting gait control of quadruped robot with straight legs based on virtual elements

LI Man-tian, JIANG Zhen-yu, WANG Peng-fei, SUN Li-ning   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
  • Received:2014-01-15 Online:2015-09-01 Published:2015-09-01

Abstract: To enhance the capability of fleet and smooth navigation of quadruped robot in unknown and complex terrain, a control method of quadruped robot with straight legs in stance phase is proposed. First, in terms of the motion condition on the complex terrain, the kinematics and dynamics models of the quadruped robot with straight legs are established. Then, on the basis of the dynamic characteristics of the Spring Loaded Inverted Pendulum (SLIP), virtual elastic and damping elements are introduced to the multi-DoFs of the torso to realize the control of these DoFs during stance phase, especially, in the forward movement. Finally, the control method is verified in simulation of the robot navigating on flat or complex ground. The performances of two control strategies developed are discussed in simulation to improve the synthesized performance of quadruped under different conditions.

Key words: automatic control technology, quadruped robot, locomotion control, trotting gait

CLC Number: 

  • TP273
[1] Hoyt D F,Taylor C R. Gait and the energetics of locomotion in horses[J].Nature, 1981, 292(5820): 239-240.
[2] Nanua P, Waldron K J. Energy comparison between trot, bound, and gallop using a simple model[J]. Journal of Biomechanical Engineering, 1995, 117(4): 466-473.
[3] Raibert M H. Legged Robots that Balance[M]. Massachusetts: MIT Press, 1986.
[4] Buchli J, Kalakrishnan M,Mistry M, et al. Compliant quadruped locomotion over rough terrain[C]∥IEEE Intelligent Robots and Systems, St. Louis, USA, 2009: 814-820.
[5] Palmer III L R, Orin D E.Intelligent control of high-speed turning in a quadruped[J]. Journal of Intelligent and Robotic Systems, 2010, 58(1): 47-68.
[6] Shkolnik A, Levashov M, Manchester I R, et al. Bounding on rough terrain with the LittleDog robot[J]. The International Journal of Robotics Research, 2011, 30(2): 192-215.
[7] Kalakrishnan M, Buchli J, Pastor P, et al. Learning, planning, and control for quadruped locomotion over challenging terrain[J]. The International Journal of Robotics Research, 2011, 30(2): 236-258.
[8] Maufroy C, Nishikawa T, Kimura H. Stable dynamic walking of a quadruped robot “Kotetsu” using phase modulations based on leg loading/unloading[C]∥IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010: 5225-5230.
[9] Maufroy C, Kimura H, Takase K. Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading[J]. Autonomous Robots, 2010, 28(3): 331-353.
[10] Buehler M, Playter R, Raibert M. Robots step outside[C]∥Adaptive Motion of Animals and Machines, Ilmenau, Germany,2005: 1-4.
[11] Pratt J, Chew C M, Torres A, et al. Virtual model control: An intuitive approach for bipedal locomotion[J]. The International Journal of Robotics Research, 2001, 20(2): 129-143.
[12] Hutter M, Remy C D, Hoepflinger M A, et al. Scarleth: design and control of a planar running robot[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011: 562-567.
[13] Jiang Zhen-yu, Li Man-tian, Guo Wei. Running control of a quadruped robot in trotting gait[C]∥IEEE Conference on Robotics, Automation and Mechatronics, Qingdao, China, 2011: 172-177.
[14] Spröwitz A, Tuleu A, Vespignani M, et al. Towards dynamic trot gait locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot[J]. The International Journal of Robotics Research, 2013, 32(8): 932-950.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[8] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[9] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[10] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[11] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[12] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[13] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[14] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[15] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!