吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1546-1551.doi: 10.13229/j.cnki.jdxbgxb201605024

Previous Articles     Next Articles

Volume expansion rule of water droplets during freezing process

JIN Jing-fu1, HAN Li-man1, CAO Min2, LI Yang1, QI Ying-chun1, CONG Qian1,3   

  1. 1.College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
    2.Editorial Department of Journals, Jilin University, Changchun 130022, China;
    3.State Key Laboratory of Automotive Simulation and Control, Jilin University,Changchun 130022,China
  • Received:2015-06-24 Online:2016-09-20 Published:2016-09-20

Abstract: The phase transition point, duration and volume change rule of water droplet during freezing process were quantitatively determined using a self-made semiconductor refrigeration device. The diameter variation coefficient, height variation coefficient and the volume expansion coefficient in phase change process are statistically analyzed. Experimental results show that the phase transition of water droplet freezing is from bottom to top. In the freezing process, the volume expansion of more than 1.09 occurs in the instant of phase transition. Compared to the duration as the liquid goes to the cold state, the phase transition is much fast. The results of this study may explain the root of frost heave during freezing process with high volume expansion coefficient and deformation. The results also suggest that the spontaneous phase transition expansion can be used to reduce or resolve the ice adhesion strength on a object surface, thus, providing theoretical and experimental basis for developing new deicing method.

Key words: engineering thermodynamics, icing, phase transformation, volume expansion coefficient

CLC Number: 

  • TB131
[1] Wu X M, Webb R L. Investigation of the possibility of frost release from a cold surface[J]. Experimental Thermal and Fluid Science, 2001, 24(3): 151-156.
[2] Ryerson C C. Ice protection of offshore platforms[J]. Cold Regions Science and Technology, 2011, 65(1): 97-110.
[3] Lee S, Bragg M B. Investigation of factors affecting iced-airfoil aerodynamics[J]. Journal of Aircraft, 2003, 40(3): 499-508.
[4] Koenig G G, Ryerson C C. An investigation of infrared deicing through experimentation[J]. Cold Regions Science and Technology, 2011, 65(1): 79-87.
[5] 李斌.飞机除冰防冰液及除冰技术[J]. 清洗世界,2012, 28(1): 26-31.
Li Bin. Brief survey of deicing /anti-icing fluid and techniques for aircraft[J]. Cleaning World, 2012, 28(1): 26-31.
[6] Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96.
[7] Lazauskas A, GuobieneA, Prosyˇcevas I, et al. Water droplet behavior on superhydrophobic SiO 2 nanocomposite films during icing/deicing cycles[J]. Materials Characterization, 2013, 82: 9-16.
[8] 丁金波, 董威. 表面粗糙度对冰冻黏强度影响试验研究[J]. 航空发动机,2012, 38(4): 42-46.
Ding Jin-bo, Dong Wei. Experimental study of influence of surface roughness on ice adhesion[J]. Aeroengine, 2012, 38(4): 42-46.
[9] Kuhn T, Earle M E, Khalizov A F, et al. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets[J]. Atmospheric Chemistry and Physics, 2011, 11(6): 2853-2861.
[10] Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-freenanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707.
[11] Zou M, Beckford S, Wei R, et al. Effects of surface roughness and energy on ice adhesion strength[J]. Applied Surface Science, 2011, 257(8): 3786-3792.
[12] Jung S, Tiwari M K, Doan N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615.
[13] Oberli L, Caruso D, Hall C, et al. Condensation and freezing of droplets on superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 2014, 210: 47-57.
[14] Momen G, Jafari R, Farzaneh M. Ice repellency behaviour of superhydrophobic surfaces: effects of atmospheric icing conditions and surface roughness[J]. Applied Surface Science, 2015,349:211-218.
[15] Fumoto K, Kawanami T. Study on freezing characteristics of supercooled water droplets impacting on solid surfaces[J]. Journal of Adhesion Science and Technology, 2012, 26(4/5): 463-472.
[16] 王皆腾, 刘中良, 黄玲艳, 等. 冷空气中水滴的冷却与冻结过程研究[J]. 工程热物理学报, 2008,29(8):1360-1362.
Wang Jie-teng,Liu Zhong-liang, Huang Ling-yan, et al. Investigation of cooling and freezing of water droplet in the cold air[J].Journal of Engineering Thermophysics, 2008,29(8):1360-1362.
[17] 王皆腾, 刘中良, 勾昱君, 等. 冷表面上水滴冻结过程的研究[J]. 工程热物理学报, 2007, 28(6): 989-991.
Wang Jie-teng, Liu Zhong-liang, Gou Yu-jun, et al. Study of freezing process of water droplet on cold surface[J]. Journal of Engineering Thermophysics, 2007, 28(6): 989-991.
[18] 王皆腾, 刘中良, 勾昱君, 等.冷铜表面上水滴冻结时的变形[J]. 中国科学E辑:技术科学, 2006, 36(11): 1344-1354.
[19] 陈廷坤. 冷表面结冰规律及防治新方法的研究[D]. 长春:吉林大学生物与农业工程学院, 2014.
Chen Ting-kun. The law of cold surface freezing and new de-icing methods[D].Changchun: College of Biological and Agricultural Engineering, Jilin University,2014.
[1] JIN Jing-fu, LI Yang, CHEN Ting-kun, CONG Qian, QI Ying-chun. Effect of elastic modulus of coating on ice-adhesion strength on substrate [J]. 吉林大学学报(工学版), 2017, 47(5): 1548-1553.
[2] JIANG Gui-yan, LIU Bin, SUI Xiao-yan, MA Ming-fang. Real time information collection of passenger flow in public transportation based on bus IC card charging system [J]. 吉林大学学报(工学版), 2016, 46(4): 1076-1082.
[3] MENG Yao, ZHANG Guo-yu, LIU Shi, SUN Gao-fei. Design of high-precision and high-dynamics star simulators based on LCoS splicing [J]. 吉林大学学报(工学版), 2016, 46(2): 621-626.
[4] YAO Yun-shi, YAN Qing-qing, WANG Rui-long, SU Pei, CHEN Shi-bin, FENG Zhong-xu. Spraying quality control of vehicle-mounted sprayer for liquid deicing and snow-melting agent [J]. 吉林大学学报(工学版), 2016, 46(1): 120-125.
[5] ZHUANG Wei-min, XIE Dong-xuan, YU Tian-ming, YU Wan-dong. Numerical simulation of hot forming of high-strength steel based on damage-phase transformation constitutive model [J]. 吉林大学学报(工学版), 2015, 45(4): 1206-1212.
[6] HUANG Hong-tao,WANG Jing,YE Hai-zhi,HUANG Shao-bin. Lazy slicing based method for verifying linear temporal logic property [J]. 吉林大学学报(工学版), 2015, 45(1): 245-251.
[7] ZHU Jin-cheng, XIAO Feng, SHUAI Bin, LIU Xiao-bo. Impact and feasibility of charging taxis in pricing zone [J]. 吉林大学学报(工学版), 2015, 45(1): 89-96.
[8] SHEN Xuan-jing, LI Xiang, LYU Ying-da, CHEN Hai-peng. Blind detection of image splicing based on visual attention model and extended hidden Markov model [J]. 吉林大学学报(工学版), 2014, 44(2): 446-453.
[9] LIU Guo-qi, LIU Hui, GAO Yu, LIU Ying, ZHU Zhi-liang. Resource dynamic pricing strategy based on utility in cloud computing [J]. 吉林大学学报(工学版), 2013, 43(06): 1631-1637.
[10] CAO Min, CHEN Ting-kun, CONG Qian, JIN Jing-fu. Influence of PMMA surface morphology on ice adhesion strength [J]. 吉林大学学报(工学版), 2013, 43(05): 1314-1319.
[11] HAN Yong, YAO Nian-min, CAI Shao-bin, HAN Qi-long. Congestion-aware iSCSI virtualization storage system [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 368-372.
[12] TAN Yi-qiu, ZHAO Li-dong, YUE Jun-sheng, LAN Tian-yun. Measure equipment for damage degree of icing asphalt pavement [J]. 吉林大学学报(工学版), 2012, 42(01): 57-62.
[13] FENG Tie, CHAI Sheng, ZHANG Jia-Chen, RAN Hong-Min. Approach of dynamic change impact analysis on software architecture [J]. 吉林大学学报(工学版), 2011, 41(02): 458-0462.
[14] CHENG Xiang, LI Li. Simulation of grid allocation in singleitem multiunit double auction market [J]. 吉林大学学报(工学版), 2010, 40(05): 1359-1365.
[15] LUO Qing-Yu, SUN Bao-Feng, WU Wen-Jing, JUAN Zhi-Cai. Predicting traffic mode split under congestion pricing based on mixed logit model [J]. 吉林大学学报(工学版), 2010, 40(05): 1230-1234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .