吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1185-1193.doi: 10.13229/j.cnki.jdxbgxb201704025

• Orginal Article • Previous Articles     Next Articles

Bionic design of corn stubble collector based on surface structure of Patinopecten yessoensis

CHEN Dong-hui1, 2, LIU Wei1, 2, LYU Jian-hua1, 2, CHANG Zhi-yong1, 2, WU Ting1, 2, MU Hai-feng1, 2   

  1. 1.College of Biological and Agricultural Engineering, Jilin University, Changchun 130022,China;
    2.Key Laboratory of Bionic Engineering, Ministry of Education, Changchun 130022,China
  • Received:2016-08-24 Online:2017-07-20 Published:2017-07-20

Abstract: In corn stubble harvesting, in order to solve the difficulty of corn stubble picking-up, a new corn stubble collector was designed. First, the kinematics of the stubble picking-up process was carried out. Then, the picking-up finger was designed. Further, reverse engineering method was employed to examine the contour of the surface of Patinopecten yessoensis as a bionic model. The cloud points of the contour to the ridges on the surface were fitted. The bionic ribbed surface of the picking-up finger was designed with a sinusoidal function y = 1.5·sin(πx/4) to present the ribbed contour, where x ranges from 0 to 4. For three different bionic corn stubble collectors, finite element software ANSYS was used to investigate the effects of friction coefficient between the picking-up finger and corn stubble, and the picking-up location on the performance of the collectors. Results show that the bionic ribbed surface of the picking-up finger contributes to the increase of the friction between the finger and the corn stubble, which enhances the corn stubble picking-up effect. Lower picking-up position benefits the corn stubble picking-up process.

Key words: bionic engineering, corn stubble collector, kinematic analysis, structure optimization, Patinopecten yessoensis, bionic design, finite element analysis

CLC Number: 

  • TH122
[1] 吴根, 白丽梅, 于洋, 等. 生物质转化能源技术的发展现状及趋势探讨[J]. 环境科学与管理,2008, 33(1):66-70.
Wu Gen, Bai Li-mei, Yu Yang, et al. Development and prospect of biomass energy conversion technology[J]. Environmental Science and Management, 2008, 33(1): 66-70.
[2] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science, 2005, 31(2): 171-192.
[3] 徐宝库. 玉米根茬收获机整机的结构设计与优化[D]. 长春:吉林大学生物与农业工程学院,2012.
Xu Bao-ku. Structural design and structure optimization of corn stubble hsrvsster[D].Changchun: College of Biological and Agricultural Engineering, Jilin University, 2012.
[4] 权龙哲, 曾百功, 马云海,等. 基于TRIZ理论的玉米根茬收获系统设计[J]. 农业工程学报, 2012, 28(23): 26-32.
Quan Long-zhe, Zeng Bai-gong, Ma Yun-hai, et al. Design of corn stubble harvester based on TRIZ theory[J]. Transactions of the CSAE,2012, 28(23): 26-32.
[5] 陈学深, 马旭, 武涛, 等. 玉米根茬挖掘机根土分离装置设计[J]. 广东农业科学,2011,38(13):158-160.
Chen Xue-shen, Ma Xu, Wu Tao, et al. Design of root soil separating device for corn stubble digging machine[J]. Guangdong Agricultural Sciences,2011,38(13):158-160.
[6] 于泳红. 玉米根茬起铺机关键部件试验研究[D]. 佳木斯:佳木斯大学机械工程学院,2011.
Yu Yong-hong. Experimental research on the key components of the corn root stubble[D]. Jiamusi: Institute of Mechanical Engineering,Jiamusi University,2011.
[7] 吴守一. 农业机械学[M].北京:中国农业机械出版社,1987.
[8] 计福来, 张会娟, 胡志超, 等. 甜菜种植与机械化收获概括[J].农机化研究,2009,31(4):234-240.
Ji Fu-lai, Zhang Hui-juan, Hu Zhi-chao, et al. Sugarbeet planting and mechanization generalization[J]. Journal of Agricultural Mechanization Research, 2009,31(4):234-240.
[9] 范素香,候书林,赵匀. 国内外甜菜生产全程机械化概况[J]. 农机化研究,2011,33(3):12-15.
Fan Su-xiang, Hou Shu-lin, Zhao Jun. General mechanization of beet production at home and abroad[J]. Journal of Agricultural Mechanization Research, 2011,33(3):12-15.
[10] 刘百顺,王春光,郭文斌. 甜菜机械特性的研究[J]. 农机化研究,2007,29(6):102-104.
Liu Bai-shun, Wang Chun-guang, Guo Wen-bin. Study on mechanical properties of sugarbeet[J]. Journal of Agricultural Mechanization Research, 2007,29(6):102-104.
[11] 曾百功. 玉米根茬收集装置研制及关键机构机理分析[D]. 长春:吉林大学生物与农业工程学院,2013.
Zeng Bai-gong. Development of maize stubble harvesting machine and mechanism analysis of its key components[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University,2013.
[12] 谢恒. 玉米根茬切挖装置的设计与试验研究[D]. 长春: 吉林大学生物与农业工程学院,2015.
Xie Heng. Design and experimental study of corn stubble device[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University,2015.
[13] 孙剑. 玉米根茬结构和力学特征及与土壤的摩擦学性能[D]. 长春: 吉林大学生物与农业工程学院,2011.
Sun Jian. Structural and mechanical characteristics of corn stubble and its tribological properties against soil[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University,2011.
[14] 吴婷. 玉米根茬捡拾器的仿生设计与模拟分析[D]. 长春: 吉林大学生物与农业工程学院,2015.
Wu Ting. Bionic design and simulation analysis of corn stubble collector[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University,2015.
[15] 中国农业机械化科学研究院. 农业机械学[M]. 北京:中国农业科学技术出版社,2007.
[16] 田喜梅. 典型贝类壳体生物耦合特性及其仿生耐磨研究[D]. 长春: 吉林大学生物与农业工程学院,2013.
Tian Xi-mei. Biological coupling and bionic anti-wear properties of typical molluscan shells[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University,2013.
[17] 荣宝军. 耐磨仿生几何结构表面及其土壤磨料磨损[D].长春: 吉林大学生物与农业工程学院,2008.
Rong Bao-jun. Biomimetic geometrical structure surfaces with anti-abrasion function and their abrasive wear against soil[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University,2008.
[18] 成思源,谢韶旺. Geomagic Studio逆向工程技术与应用[M].北京:清华大学出版社,2010.
[19] 罗之军,何彪. 基于Geomagic Studio的逆向工程技术[J]. 贵州工业大学学报,2008,37(5):102-104.
Luo Zhi-jun,He Biao. Reverse engineering technology based on geomagic studio[J]. Journal of Guizhou University of Technology,2008,37(5):102-104.
[20] 武新,张永胜. Origin在曲线拟合中的应用[J]. 计算机工程与应用,2005,41(17):206-208.
Wu Xin, Zhang Yong-sheng. Application of Origin in curve fitting[J]. Computer Engineering and Application. 2005,41(17):206-208.
[21] 张岩. ANSYS Workbench 15.0 有限元分析从入门到精通[M]. 北京:机械工业出版社,2014.
[22] 许京荆. ANSYS 13.0 Workbench数值模拟技术[M]. 北京:中国水利水电出版社,2012.
[23] Abo-Elnor M, Hamilton R, Boyle J T. 3D Dynamic analysis of soil-tool interaction using the finite element method[J]. Journal of Terramechanics, 2003, 40(1): 51-62.
[24] Tong J, Moayad B Z. Effects of rake angle of chisel plough on soil cutting factors and power requirements: A computer simulation[J]. Soil and Tillage Research, 2006, 88(1/2): 55-64.
[25] Abu-Hamdeh N H, Reeder R C. A nonlinear 3D finite element analysis of the soil forces acting on a disk plow[J]. Soil and Tillage Research, 2003, 74(2): 115-124.
[26] 赵淳,王英玲. Pro\E Wildfire5.0实用教程[M]. 北京:清华大学出版社,2012.
[1] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[2] LIU Guo-zheng, SHI Wen-ku, Chen Zhi-yong. Finite element analysis of transmission error for hypoid gears considering installation error [J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[3] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[4] TIAN Wei-jun, WANG Ji-yue, LI Ming, ZHANG Xing-wang, ZHANG Yong, CONG Qian. Observation of locomotion of water strider towards water strider robot [J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[5] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[6] TIAN Li-mei, WANG Yang-jun, LI Zi-yuan, SHANG Yan-geng. Development of drag-reduction test system of bionic functional surfaces with internal flow [J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[7] WANG Ying, LI Jian-qiao, ZHANG Guang-quan, HUANG Han, ZOU Meng. Mechanical characteristics of bionic walking foot in different media [J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[8] LIU Kun, YE Ming, LI Chao, YAN Peng-fei, LIU Jin-qiao. Design and analysis of an arm mechanical structure or sit-to-stand rehabilitation training [J]. 吉林大学学报(工学版), 2016, 46(5): 1532-1539.
[9] LIU Kun, ZHAO Jian-chen, LI Chao, YAN Peng-fei, HAN Xuan. Mechanical structure design and optimization for the lower limb rehabilitation training system based on Hyperworks [J]. 吉林大学学报(工学版), 2015, 45(5): 1474-1480.
[10] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[11] WU Yue, YANG Zhi-gang, CHEN Long, KANG Xiao-tao, ZHANG Dong-wei. Simulation and experiment of piezoelectric cantilever generator with multi-modal [J]. 吉林大学学报(工学版), 2015, 45(4): 1162-1167.
[12] ZHANG Rui, YANG Ming-ming, LIU Hai-bao, ZENG Gui-yin, PAN Run-duo, LI Jian-qiao. Numerical simulation of sand flow fixation characteristics of plantar surface of ostrich didactyl foot [J]. 吉林大学学报(工学版), 2015, 45(2): 508-515.
[13] YU Zhen-huan,ZHANG Na,LIU Shun-an. Simulation analysis of dynamic nonlinear characteristics of vehicle shock absorber based on fluid-structure interaction [J]. 吉林大学学报(工学版), 2015, 45(1): 16-21.
[14] TIAN Li-mei, SHANG Zhen, HU Guo-liang, LI Nan. Numerical simulation of the lift and drag characteristics of passenger car based on morphological bionics [J]. 吉林大学学报(工学版), 2014, 44(5): 1283-1289.
[15] LI Cheng, ZHU Hong-hong, TIE Ying, HE Long. Stress distribution and load sharing in single-lap bonded/bolted joints [J]. 吉林大学学报(工学版), 2013, 43(04): 933-938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!