吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1244-1252.doi: 10.13229/j.cnki.jdxbgxb201704033
• Orginal Article • Previous Articles Next Articles
MA Miao, LI Yi-bin
CLC Number:
[1] Wang H, Schmid C. Action recognition with improved trajectories[C]//Proceedings of the IEEE International Conference on Computer Vision,Sydney,NSW,Australia,2013: 3551-3558. [2] 王丹, 张祥合. 基于 HOG 和 SVM 的人体行为仿生识别方法[J]. 吉林大学学报: 工学版, 2013, 43(增刊1): 489-492. Wang Dan, Zhang Xian-ghe. Biomimetic recognition method of human behavior based on HOG and SVM[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(Sup.1): 489-492. [3] Prest A, Ferrari V, Schmid C. Explicit modeling of human-object interactions in realistic videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013, 35(4): 835-848. [4] Wang H, Klaser A, Schmid C, et al. Action recognition by dense trajectories[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Colorado Springs, CO,USA,2011: 3169-3176. [5] Iosifidis A, Tefas A, Pitas I. Discriminant bag of words based representation for human action recognition[J]. Pattern Recognition Letters, 2014, 49: 185-192. [6] Peng X, Zou C, Qiao Y, et al. Action recognition with stacked fisher vectors[C]//European Conference on Computer Vision(ECCV),Zurich,Switzerland,2014: 581-595. [7] Souly N, Shah M. Visual saliency detection using group lasso regularization in videos of natural scenes[J]. International Journal of Computer Vision, 2016,117(1):93-110. [8] Le Q V, Zou W Y, Yeung S Y, et al. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011: 3361-3368. [9] Ma S, Zhang J, Ikizler-Cinbis N, et al. Action recognition and localization by hierarchical space-time segments[C]//Proceedings of the IEEE International Conference on Computer Vision,Sydney,NSW,Australia,2013:2744-2751. [10] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,Lake Tahoe,Nevada,USA,2012: 1097-1105. [11] Gkioxari G, Girshick R, Malik J. Contextual action recognition with r*cnn[C]//Proceedings of the IEEE International Conference on Computer Vision,Santiago,Chile,2015:1080-1088. [12] Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos[C]//Advances in Neural Information Processing Systems,2014: 568-576. [13] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Colu mbus,Ohio,USA,2014:1725-1732. [14] Brox T, Bruhn A, Papenberg N, et al. High accuracy optical flow estimation based on a theory for warping[C]//European Conference on Computer Vision(ECCV), Prague,Czech Republic,2004:25-36. [15] Gkioxari G, Malik J. Finding action tubes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 759-768. [16] Cherian A, Mairal J, Alahari K, et al. Mixing body-part sequences for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus,Ohio,USA,2014:2353-2360. [17] Chatfield K, Simonyan K, Vedaldi A, et al. Return of the devil in the details: delving deep into convolutional nets[J]. arXiv Preprint arXiv:1405.3531, 2014. [18] Deng J, Dong W, Socher R, et al. Imagenet:a large-scale hierarchical image database[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009: 248-255. [19] Soomro K, Zamir A R, Shah M. UCF101: A dataset of 101 human actions classes from videos in the wild[J]. arXiv preprint arXiv:1212.0402, 2012. [20] Ravanbakhsh M, Mousavi H, Rastegari M, et al. Action Recognition with Image Based CNN Features[J]. arXiv preprint arXiv:1512.03980, 2015. [21] Hamming R W. Error detecting and errorcorrecting codes[J]. Bell System Technical Journal, 1950, 29(2): 147-160. [22] Cheron G, Laptev I, Schmid C. P-CNN: pose-based CNN features for action recognition[C]//Proceedings of the IEEE International Conference on Computer Vision,Santiago,Chile,2015:3218-3226. [23] Chatfield K, Lempitsky V S, Vedaldi A, et al. The devil is in the details: an evaluation of recent feature encoding methods[C]//BMVC,Dundee,UK,2011:1-12. [24] Rodriguez M D, Ahmed J, Shah M. Action mach a spatio-temporal maximum average correlation height filter for action recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Anchorage,AK,USA,2008:1-8. [25] Jhuang H, Gall J, Zuffi S, et al. Towards understanding action recognition[C]//Proceedings of the IEEE International Conference on Computer Vision,Sydney,NSW,Australia,2013: 3192-3199. |
[1] | XU Yan,SUN Mei-shuang. Enhancing underwater image based on convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1895-1903. |
[2] | DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577. |
[3] | GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585. |
[4] | WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[5] | ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[6] | HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[7] | LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[8] | LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[9] | WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[10] | YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[11] | LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[12] | WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329. |
[13] | QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
[14] | LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[15] | SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230. |
|