Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1900-1910.doi: 10.13229/j.cnki.jdxbgxb20180729

Previous Articles     Next Articles

Loading rate effect of mesodamage characteristics of crumb rubber concrete

Sheng-tong DI1,2,3(),Chao JIA2(),Wei-guo QIAO3,4,Kang LI1,2,Kai TONG1,2   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, China
    2. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
    3. Key Laboratory of Disaster Prevention and Reduction of Civil Engineering, Qingdao 266590, China
    4. School of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2018-07-11 Online:2019-11-01 Published:2019-11-08
  • Contact: Chao JIA E-mail:dishengtong@163.com;jiachao@sdu.edu.cn

Abstract:

Based on the particle discrete element theory, five loading rates corresponding to different levels of strain rate were selected in this paper, and the corresponding loading rates were 0.001 m/s, 0.01 m/s, 0.1 m/s, 1.0 m/s and 3.0 m/s. The uniaxial compressive strength test of normal concrete (NC) and crumb rubber concrete (CRC) was simulated, and the effect of loading rate on the constitutive relation, crack propagation, meso-damage and energy evolution was systematically analyzed. The results show that the uniaxial compressive strength and the corresponding peak strain of the material present a nonlinear growth relationship with the increase of the loading rate. The loading rate sensitivity of CRC is more obvious than that of NC. There is a negative correlation between loading rate and NC crack generation rate, but a positive correlation between loading rate and CRC crack generation rate. The fitting equations between the mesoscopic damage variables and the loading rates of the two materials are proposed, and the fitting result is good, and the effects of different loading rates on the evolution law of elastic strain energy and kinetic energy of materials are analyzed.

Key words: road engineering, crumb rubber concrete, meso-damage, particle discrete element, loading rate, crack propagation

CLC Number: 

  • TU528

Fig.1

Mesoscopic contact model of PBM"

Fig.2

Failure criterion of the PBM"

Fig.3

Schematic diagram of the numerical model of different rubber content"

Table 1

Mechamical parameters and PFC results"

分组 压缩强度/MPa 峰值应变/% 弹性模量/GPa 泊松比
NC 实验值 38.58 0.797 5.81 0.215
模拟值 38.45 0.816 5.72 0.211
CRC,40%Rubber 实验值 1.15 1.63 0.065 0.326
模拟值 1.097 1.57 0.069 0.332

Fig.4

Tigure of laboratory test (left) and numerical simulation (right) of fracture morphology"

Fig.5

Comparison diagram between laboratory test and numerical simulation of constitutive curve of samples"

Table 2

Meso-mechanical parameters of the CRC"

细观参数 砂粒 橡胶
最小粒径尺寸/mm 0.8 1.2
粒径尺寸比 1.66 1.66
密度/(kg·m?3 2600 1200
法向刚度/(N·m) 1.2×108 1.1×105
刚度比 1.2 1.1
摩擦因数 0.42 0.98
平行粘结弹性模量/GPa 1.72 0.102
平行粘结刚度比 1.0 1.0
平行粘结抗拉强度/MPa 65.1 6.52
平行粘结粘聚力/MPa 34.0 1.35
平行粘结内摩擦角/(°) 9 0

Fig.6

Comparison verification of microstructure model and parameters of CRC"

Fig.7

Stress-strain curves of uniaxial compression test at different loading rates"

Fig.8

Relation of compressive strength, peak strain and loading rate"

Fig.9

Microcracks generation and extension evolution law"

Fig.10

Relationship between microcracks initiation and number with loading rate"

Fig.11

Distribution of microcracks propagation under different loading rate"

Table 3

Statistics for the damage variable and dissipation energy at peak intensity"

加载速率/(m·s-1 边界输入能/J 耗散能/J 耗散能比率/% 损伤变量
NC CRC NC CRC NC CRC NC CRC
0.001 35.7 10.30 8.63 4.06 24.2 39.4 0.028 0.28
0.01 36.0 9.71 8.83 3.77 24.5 38.8 0.029 0.27
0.1 36.4 11.60 8.89 4.84 24.4 41.7 0.030 0.30
1.0 39.0 14.20 10.35 6.51 26.5 45.8 0.034 0.36
3.0 43.4 17.10 12.93 8.32 29.8 48.7 0.037 0.39

Fig.12

Fitting curve of damage variable and loading rate"

Fig.13

Elastic energy and kinetic energy evolution at different loading rates"

Fig.14

Relation curve of energy and loading rate at peak intensity"

1 Eldin N N , Senouci A B . Rubber-tire particles as concrete aggregate[J]. Journal of Materials in Civil Engineering, 1993, 5(4): 478-496.
2 Khatib Z K , Bayomy F M . Rubberized portland cement concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3): 206-213.
3 Segre N , Joekes I . Use of tire rubber particles as addition to cement paste[J]. Cement and Concrete Research, 2000, 30(9): 1421-1425.
4 Topcu I B , Avcular N . Analysis of rubberized concrete as a composite material[J]. Cement and Concrete Research, 1997, 27(8): 1135-1139.
5 Topcu I B . Assessment of the brittleness index of rubberized concretes[J]. Cement and Concrete Research, 1997, 27(2): 177-183.
6 Topcu I B . The properties of rubberized concretes[J]. Cement and Concrete Research, 1995, 25(2): 304-310.
7 周梅, 朱涵, 艾丽, 等 . 橡胶微粒掺量对塑性混凝土性能的影响[J]. 建筑材料学报, 2009, 12(5): 563-567.
7 Zhou Mei , Zhu Han , AiLi, et al . Effect of volumetric percentage of rubber-particles on properties of plastic concrete[J]. Journal of Building Materials, 2009, 12(5): 563-567.
8 周梅, 朱涵, 薛忠泉 . 橡胶集料塑性混凝土的抗压强度特性[J]. 土木建筑与环境工程, 2011, 33(增刊1): 74-78.
8 Zhou Mei , Zhu Han , Xue Zhong-quan . Experimental on compressive strength of rubber aggregate plastic concrete[J]. Journal of Civil, Architectural and Environmental Engineering, 2011, 33(Sup.1): 74-78.
9 Hernandez-Olivares F , Barluenga G , Bollati M , et al . Static and dynamic behaviour of recycled tyre rubber-filled concrete[J]. Cement and Concrete Research, 2002, 32(10): 1587-1596.
10 刘锋, 潘东平, 李丽娟, 等 . 橡胶混凝土应力和强度的细观数值分析[J]. 建筑材料学报, 2008, 11(2): 144-151.
10 Liu Feng , Pan Dong-ping , Li Li-juan , et al . Numerical simulation on micro-level of stress and strength in crumb rubber concrete[J]. Journal of Building Materials, 2008, 11(2): 144-151.
11 刘锋, 钟根全, 夏晓舟, 等 . 基于细观层次橡胶混凝土单轴受压力学分析[J]. 建筑材料学报, 2010, 13(6): 733-738.
11 Liu Feng , Zhong Gen-quan , Xia Xiao-zhou , et al . Mechanical analysis of rubberized concrete subjected to uniaxial compression on meso-level[J]. Journal of Building Materials, 2010, 13(6): 733-738.
12 刘锋, 黄海滨, 夏晓舟, 等 . 再生塑料改性混凝土力学性能研究及数值模拟[J]. 建筑材料学报, 2011, 14(2): 173-179.
12 Liu Feng , Huang Hai-bin , Xia Xiao-zhou , et al . Mechanical test on modified concrete with recycled plastic particles and its numerical simulation[J]. Journal of Building Materials, 2011, 14(2): 173-179.
13 袁勇, 郑磊 . 橡胶混凝土动力性能试验研究[J]. 同济大学学报:自然科学版, 2008,36(9): 1186-1190.
13 Yuan Yong , Zheng Lei . Experimental study on dynamic properties of rubberized concrete[J]. Journal of Tongji University (Natural Science), 2008, 36(9): 1186-1190.
14 许金余, 李赞成, 罗鑫, 等 . 橡胶混凝土的静动压缩强度特性的对比研究[J]. 建筑材料学报, 2014, 17(6): 1015-1019, 1035.
14 Xu Jin-yu , Li Zan-cheng , Luo Xin , et al . A comparative study of the static and dynamic compression strength of rubber powder concrete[J]. Journal of Building Materials, 2014, 17(6): 1015-1019, 1035.
15 郭永昌, 刘锋, 陈贵炫, 等 . 橡胶混凝土的冲击压缩试验研究[J] .建筑材料学报, 2012, 15(1): 139-144.
15 Guo Yong-chang , Liu Feng , Chen Gui-xuan , et al . Experimental Investigation on Impact Resistance of Rubberized Concrete[J]. Journal of Building Materials, 2012, 15(1): 139-144.
16 Itasca Consulting Group Inc . Manual of particle flow code in 3-dimension (Version 5.0)[M]. Minneapolis: Itasca Consulting Group Inc, 2016.
17 Lajtai E Z , Scott Duncan E J , Carter B J . The effect of strain rate on rock strength[J]. Rock Mechanics and Rock Engineering, 1991, 24(2): 99-109.
18 张国凯, 李海波, 夏祥, 等 . 岩石细观结构及参数对宏观力学特性及破坏演化的影响[J]. 岩石力学与工程学报, 2016, 35(7): 1341-1352.
18 Zhang Guo-kai , Li Hai-bo , Xia Xiang , et al . Effects of microstructure and micro parameters on macro mechanical properties and failure of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1341-1352.
19 徐金明, 谢芝蕾, 贾海涛 . 石灰岩细观力学特性的颗粒流模拟[J]. 岩土力学, 2010, 31(增刊2): 390-395.
19 Xu Jin-ming , Xie Zhi-lei , Jia Hai-tao . Simulation of mesomechanical properties of limestone using particle flow code[J]. Rock and Soil Mechanics, 2010, 31(Sup.2): 390-395.
20 徐小敏, 凌道盛, 陈云敏, 等 . 基于线性接触模型的颗粒材料细-宏观弹性常数相关关系研究[J]. 岩土工程学报, 2010, 32(7): 991-998.
20 Xu Xiao-min , Ling Dao-sheng , Chen Yun-min , et al . Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 991-998.
21 陈贵炫 . 橡胶混凝土的抗冲击性能研究[D]. 广州:广东工业大学土木与交通学院, 2011.
21 Chen Gui-xuan . Impact resistance research on rubberized concrete[D]. Guangzhou: Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 2011.
22 李文斌 . 橡胶混凝土动态力学性能实验研究[D]. 广州:广州大学土木工程学院, 2011.
22 Li Wen-bin . Experimental study of dynamic properties of rubber concrete[D]. Guangzhou: School of Civil Engineering, Guangzhou University, 2011.
23 黄达, 岑夺丰 . 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(9): 1926-1936.
23 Huang Da , Cen Duo-feng . Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936.
[1] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[2] Yun-long ZHANG,Liu-guang ZHOU,Jing WANG,Chun-li WU,Xiang LYU. Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1531-1538.
[3] Yi-lun LIU,Qing WANG,Chi LIU,Song-bai LI,Jun HE,Xian-qiong ZHAO. Effect of creep and artificial aging on fatigue crack growth performance of 2524 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1636-1643.
[4] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[5] Xiao⁃zhen LI,Jun⁃zhe LIU,Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI. Effect of carbonation on nitrite ion distribution in cement paste [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1162-1168.
[6] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[7] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[8] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[9] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[10] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[11] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[12] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[13] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[14] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[15] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Zhi-ren,Wang Ping,Bai Xiang-zhong . Magneticelastisity bucklig analysis of thin currentcarrying plate
[J]. 吉林大学学报(工学版), 2007, 37(03): 721 -0725 .
[2] Liu Zhi-lin,Pei Run,Kang Er-liang,Mu Xiang-yong . Model predictive control of time delay switched system
with certain switching order constrains
[J]. 吉林大学学报(工学版), 2008, 38(02): 454 -0459 .
[3] Chang Guofeng,Zhang Jipeng,Guo Yingnan,Liu Xunjun. Transient Parameters Collecting and Processing System for Rapid Compression Machine[J]. 吉林大学学报(工学版), 2006, 36(01): 31 -0035 .
[4] Xu Ze-min,Yin Yong-guang,Wu Wen-fu,Yin Li-yan . Effects of processing parameters on reduction of moisture
content in paddy vacuum drying
[J]. 吉林大学学报(工学版), 2008, 38(02): 493 -0496 .
[5] Deng Le,Zhao Ding-xuan,Ni Tao,Wen Guang,Tang Xin-xing . Bilateral control scheme of masterslave telerobotic system with telepresence[J]. 吉林大学学报(工学版), 2006, 36(05): 681 -0685 .
[6] CHEN Zong-hai,FANG Wei,CHEN Hui-yong,WANG Zhi-ling . Active contour model based on distribution matching and its image segmentation algorithm[J]. 吉林大学学报(工学版), 2008, 38(06): 1441 -1446 .
[7] SHI Wen-Xiao, LI Hai-Bei, GONG Jing. Technology of baton handover in TD SCDMA systems[J]. 吉林大学学报(工学版), 2009, 39(05): 1358 -1363 .
[8] WANG Xin,JIANG Ji-hai. Regenerative braking control strategy for wheel drive hydraulic hybrid vehicle[J]. 吉林大学学报(工学版), 2009, 39(06): 1544 -1549 .
[9] Zhang Yu-ting,Liao Jian-xin,Liu Yan,Zhang Tie-ying. Mechanism of integration between PIM and VPMN[J]. 吉林大学学报(工学版), 2006, 36(04): 554 -559 .
[10] LIU Gui-Xia, WANG Rong-Xing, HUANG Lan, YU Zhe-Zhou, ZHOU Chun-Guang. Protein contact map prediction based on improved clonal selection algorithm[J]. 吉林大学学报(工学版), 2009, 39(05): 1303 -1308 .