Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1653-1662.doi: 10.13229/j.cnki.jdxbgxb20190514

Previous Articles    

Effect of Ti addition on microstructure and mechanical properties of ductile iron

Jin-guo WANG1,2(),Zhi-qiang WANG1,2,Shuai REN1,2,Rui-fang YAN1,2,Kai HUANG1,2,Jin GUO1,2   

  1. 1.Key Laboratory of Automotive Materials Ministry of Education, Jilin University, Changchun 130022, China
    2.College of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2019-05-24 Online:2020-09-01 Published:2020-09-16

Abstract:

The effects of different Ti contents on the microstructure and mechanical properties of ductile cast iron were investigated by adding Ti-C-Fe pre-forms. The results show that Ti mainly exists in the form of TiC and Ti (C,N) in molten iron, and the structures of pearlite and ferrite are refined. Ti content of 0.023 wt.% can increase the spheroidization rate, graphite number and ferrite content. With the increase of Ti content, The generated TiC particles will hinder the diffusion of C atoms, resulting in distortion of the graphite spheres, a decrease in the spheroidization rate and ferrite content. The mechanical properties of the specimens were tested and found that the ductile iron specimen with Ti content of 0.023 wt.% possessed good comprehensive mechanical properties, and its yield strength and tensile strength were increased by 5.43% and 3.73% respectively, and the elongation percentage was increased by 10.64%. When the Ti content was between 0.054 wt.% and 0.072 wt.%, the tensile strength of the sample was higher. The yield strength and brinell hardness of the sample with Ti content of 0.135 wt.% reached the maximum.

Key words: metallic materials, ductile iron, TiC, mechanical properties

CLC Number: 

  • TG143.5

Table 1

Chemical composition of ductile iron samples"

试样CSiMnPSTiMgCe
Z03.032.450.520.0060.0080.0060.0330.029

Z1

Z2

Z3

Z4

3.05

3.11

3.14

3.14

2.42

2.41

2.41

2.39

0.52

0.50

0.52

0.52

0.006

0.006

0.006

0.006

0.008

0.008

0.008

0.008

0.023

0.054

0.072

0.135

0.034

0.034

0.035

0.032

0.029

0.030

0.030

0.029

Fig.1

Sample structure and element surface scanning"

Fig.2

Product particles in pearlite matrix"

Fig.3

Schematic diagram of TiC particle formation and distribution"

Fig.4

Graphite and matrix structure"

Table 2

Graphite analysis of different Ti content specimens"

项目Z0Z1Z2Z3Z4
Ti/(质量分数%)0.0060.0230.0540.0720.135
球化率/%70.273.065.460.248.5
单位面积石墨数/(N·mm-2)42.552.147.945.143.5
石墨面积比/%9.3010.4011.099.499.01

Fig.5

Product particles in ferrite matrix"

Fig.6

Measurement schematic diagram of ferrite grain size for samples with different Ti content"

Table 3

Ferrite grain size statistics of different Ti content samples"

项目Z0Z1Z2Z3Z4
Ti/质量分数%0.0060.0230.0540.0720.135
晶粒度级别数8.178.679.009.159.40
晶粒数目22633201396844615282

Table 4

Tissue analysis of different Ti content samples"

项目Z0Z1Z2Z3Z4
铁素体含量/%61.563.058.258.054.2
珠光体含量/%38.537.041.842.045.8

Fig.7

Mechanical properties of samples with different Ti content"

Table 5

Mechanical properties of different Ti content samples"

项 目Z0Z1Z2Z3Z4
Ti/质量分数%0.0060.0230.0540.0720.135
屈服强度/MPa350369399390410
抗拉强度/MPa510529582575542

断后延伸率/%

布氏硬度/HB

14.10

159

15.61

150

13.82

170

13.22

177

12.40

190

Fig.8

Tensile fracture morphology"

1 李艳霞, 王文韶, 刘俊友, 等. 钛含量对中铬铸铁组织和性能的影响[J]. 材料导报, 2015, 29(1): 406-408, 416.
Li Yan-xia, Wang Wen-shao, Liu Jun-you, et al. Influences of Ti content on microstructure and property of medium-chromium cast iron[J]. Materials Reports, 2015, 29(1): 406-408, 416.
2 钟兵. 高Ti对灰铸铁组织及性能的影响[J]. 铸造技术, 2017, 38(8): 1949-1952.
Zhong Bing. Influence of high Ti on microstructure and properties of gray cast iron[J]. Foundry Technology, 2017, 38(8): 1949-1952.
3 赵玉谦, 方世杰, 赵宇光, 等. (Ti,Fe)-Al-C体系钢铁基复合材料的热力学计算与分析[J]. 吉林大学学报: 工学版, 2005, 35(4): 343-347.
Zhao Yu-qian, Fang Shi-jie, Zhao Yu-guang, et al. Thermodynamic calculation and analysis of steel matrix composite of(Ti, Fe)-Al-C system[J]. Journal of Jilin University(Engineering and Technology Edition), 2005, 35(4): 343-347.
4 赵宇光, 姜启川, 任露泉, 等. Fe-C-Ti-Mn合金系中TiC原位生成反应的热力学分析[J]. 吉林大学学报: 工学版, 2004, 34(1): 1-6.
Zhao Yu-guang, Jiang Qi-chuan, Ren Lu-quan, et al. Thermodynamic analysis on in-situ TiC synthesis in Fe-C-Ti-Mn system[J]. Journal of Jilin University(Engineering and Technology Edition), 2004, 34(1): 1-6.
5 郭文涛, 陈淑英, 李青春, 等. 球墨铸铁中含Ti夹杂物的研究[J]. 铸造, 2012, 61(1): 92-96.
Guo Wen-tao, Chen Shu-ying, Li Qing-chun, et al. Study on Ti-inclusions in ductile iron[J]. China Foundry, 2012, 61(1): 92-96.
6 吕维洁, 杨志峰, 张荻, 等. 原位合成钛基复合材料增强体TiC的微结构特征[J]. 中国有色金属学报, 2002, 12(3): 511-516.
Lv Wei-jie, Yang Zhi-feng, Zhang Di, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 511-516.
7 Lv W J, Zhang D, Zhang X N, et al. Growth mechanism of reinforcements in in-situ synthesized(TiB+TiC)/Ti composites[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(1): 67-71.
8 Li Y, Li Y Q, Fruehan R J. Foamation of titanium carbonitride from hot metal[J]. ISIJ International, 2001, 41(12): 1417-1422.
9 申志清, 田学雷, 郑洪亮, 等. 球墨铸铁石墨球核心组成及形核机制的研究[J]. 铸造, 2012, 61(4): 357-361.
Shen Zhi-qing, Tian Xue-lei, Zheng Hong-liang, et al. Phase composition and nucleation mechanism of spheroidal graphite nucleus in ductile iron[J]. China Foundry, 2012, 61(4): 357-361.
10 Fraś E, Górny M. Inoculation effects of cast iron[J]. Arichives of Foundry Engineering, 2012, 12(4): 39-46.
11 Xu Z M, Liang G F, Guan Q F, et al. TiC as heterogeneous nuclei of the(Fe, Mn)3C and austenite intergrowth eutectic in austenite steel matrix wear resistant composite[J]. Materials Research Bulletin, 2003, 39(3): 457-463.
12 韩悦. 内生纳米/亚微米TiC增强铁基复合材料组织与力学性能[D]. 长春: 吉林大学材料科学与工程学院, 2016.
Han Yue. Microstructures and mechanical properties of in situ synthesized nano/sub-micron-sized TiC reinforced iron composites[D]. Changchun: School of Materials Science and Engineering, Jilin University, 2016.
13 陈刚, 毛永锋, 赵玉涛, 等. 一种原位碳化钛颗粒增强铁基复合材料及其制备方法[P]. 中国: CN201210054540.9, 2012-07-18.
14 刘志科. 原位合成铁基复合材料的微结构特征、生长机制以及界面反应机理的研究[D]. 南宁: 广西大学机械工程学院, 2009.
Liu Zhi-ke. Study on the microstructure, grow mechanism of reinforcement and interface in in situ synthesized ferrous matrix composite[D]. Nanning: College of Mechanical Engineering, Guangxi University, 2009.
[1] Wei LAN,Jiang LIU,Li XIN,Jing-xi LI,Xing-jun HU,Jing-yu WANG,Tao SANG. Influence of rearview mirror styling on water phase distribution on side windows [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1590-1599.
[2] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[3] Chang-qing DU,Xi-liang CAO,Biao HE,Wei-qun REN. Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1556-1564.
[4] Ji-qing CHEN,Qing-sheng LAN,Feng-chong LAN,Zhao-lin LIU. Trajectory tracking control based on tire force prediction and fitting [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1565-1573.
[5] Zhi-gang YANG,Ya-jun FAN,Chao XIA,Shi-jun CHU,Xi-zhuang SHAN. Drag reduction of a square⁃back Ahmed model based on bi⁃stable wake [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1635-1644.
[6] Zhe SHEN,Yi-gang WANG,Zhi-gang YANG,Yin-zhi HE. Drift error correction of unknown sound source in wind tunnel using approximation method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1584-1589.
[7] Zhao LIU,Jiang-lin CHENG,Yu-tian ZHU,Li-hui ZHENG. Vertical vibration modeling and motion correlation analysis of rail vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1600-1607.
[8] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[9] Jian WANG,Xin XU,Han GU,Duo-jun ZHANG,Sheng-ji LIU. Heating characteristics of DOC based on exhaust thermal management of diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 408-416.
[10] Xiang-jun YU,Yuan-hui HUAI,Xue-fei LI,De-wu WANG,An YU. Shoveling trajectory planning method for wheel loader based on kriging and particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 437-444.
[11] Wei WANG,Jian-ting ZHAO,Kuan-rong HU,Yong-cang GUO. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 464-471.
[12] Chang-bin DONG,Yong-ping LIU,Yong-qiao WEI,Hai-qing DENG,Jie Xu. Analysis of nonlinear dynamic characteristic of elliptic gear transmission system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 483-493.
[13] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[14] Yun-wei ZHAO,De-xu GENG,Xiao-min LIU,Qi LIU. Implementation and stability on turning with constant radius of pneumatic flexible hexapod robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 472-482.
[15] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!