Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 946-955.doi: 10.13229/j.cnki.jdxbgxb20200095

Previous Articles     Next Articles

Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall

Guang-tai ZHANG1(),Lu-yang ZHANG1,Guo-hua XING2,Yin-long CAO1,Bao YI1   

  1. 1.School of Civil Engineering,Xinjiang University,Urumqi 830046,China
    2.School of Civil Engineering,Chang'an University,Xi'an 710061,China
  • Received:2020-01-21 Online:2021-05-01 Published:2021-05-07

Abstract:

The mechanical characteristics of the steel-plypropylene hybrid fiber concrete (SPFRC) shear walls were studied by cyclic testing on two SPFRC shear walls and one reinforced concrete (RC) shear wall under reversed cyclic loading.The effects of fiber content and axial load ratio on the failure pattern, shear capacity, ductility and energy dissipation capacity of the shear walls are analyzed. The test results show that under the same axial load ratios, the hybrid fiber can effectively restrain the development of shear wall cracks, improve the shear capacity, deformation capacity and energy dissipation capacity of the shear wall. For hybrid fiber specimens, with the increase of axial load ratio from 0.1 to 0.2, the bearing capacity and ductility are improved, but the energy dissipation capacity declined. According to the mechanism of truss-slope lever mechanism, the SPFRC shear wall shear bearing capacity calculation equation was established, in which the contribution of horizontal and vertical distribution of rebar, concrete oblique lever and concealed columns to the shear-bearing capacity are taken into consideration. This equation is verified using domestic relevant data. The average value of the ratio between measured and calculated shear bearing capacity is 1.01 and the standard deviation is 0.17, which are well matched.

Key words: civil engineering, steel-polypropylene hybrid fiber, concealed column, shear wall, shear capacity, energy dissipation capacity, seismic performance

CLC Number: 

  • TU528.01

Table 1

Main parameters of shear wall specimens"

试件编号钢纤维体积率%聚丙烯纤维掺量/(kg·m-3)

剪跨

λ

轴压

n

SWC-0-0-0.1001.10.1
SWH-1.5-1.2-0.11.51.21.10.1
SWH-1.5-1.2-0.21.51.21.10.2

Fig.1

Size and reinforcement of shear wall specimens"

Table 2

Concrete mix proportion"

试件编号混凝土强度水泥减水剂
SWC-0.1C5015538463011005.76
SWH-0.1C5015538463011006.24
SWH-0.2C5015538463011006.24

Table 3

Fiber basic parameters"

纤维

种类

长度

/mm

直径

/μm

密度

/(g·cm-3)

抗拉强度

/MPa

弹性模量

/GPa

钢纤维3330027.82≥600210
聚丙烯纤维19330.91530>3.5

Table 4

Measured values of mechanical properties of steel bars"

钢筋种类

直径

/mm

屈服强度

/MPa

极限抗拉强度

/MPa

HRB4006505710
HRB4008510715
HRB50012650820
HRB50018550705
HRB50025530705

Table 5

Measured values of mechanicalproperties of concret"

试件编号立方体抗压强度/MPa轴心抗压强度/MPa劈裂抗拉强度/MPa
P0S062.6040.63.90
P1.2S065.8942.74.66
P0S1.580.5052.15.16
P1.2S1.582.7054.85.96

Fig.2

Schematic diagram of test loading device"

Fig.3

Displacement meter arrangement and rebar strain measuring point layout"

Fig.4

Failure pattern of specimen"

Fig.5

Test piece lag curve and skeleton curve"

Table 6

Load and displacement of shear wall specimes at characteristic state"

试件编号方向开裂屈服峰值极限延性系数
荷载/kN位移/mm荷载/kN位移/mm荷载/kN位移/mm荷载/kN位移/mm
SWC-0.1正向186.081.80408.788.94491.6015.82441.3517.241.77
反向189.952.80352.987.89427.9411.79371.1813.821.75
均值188.022.30380.868.42459.7713.81406.2715.531.76
SWH-0.1正向185.851.98434.498.52505.4613.86447.4617.982.11
反向201.322.95456.619.69544.2415.97534.9018.001.86
均值193.592.47445.559.11524.8514.92491.1817.991.99
SWH-0.2正向333.102.95575.296.89655.2210.88556.9413.221.92
反向377.104.04630.268.55638.3517.51542.6019.532.28
均值355.103.50602.787.72646.7914.20549.7716.382.10

Fig.6

Calculation of equivalent viscousdamping coefficient"

Table 7

Hysteresis curve area and equivalent viscous damping coefficient of the test piece"

试件编号SABC+SADC/mm2SΔOBD+SΔODF/mm2γe
SWC-0.13983.6645577.6290.114
SWH-0.19235.6617999.7020.184
SWH-0.25051.5348014.5350.101

Fig.7

Shear transfer mechanism and simplifiedcalculation model for shear capacityof shear wall panels"

Table 8

Calculation and comparison ofshear capacity of shear walls"

方法试件编号Vtest/kNV/kNVtest/V
本文SWC-0.1427.9448.20.95
SWH-0.1505.5534..90.94
SWH-0.2638.4622.41.03
文献[21]SW0198.6208.70.95
SW1-1266.7226.41.17
SW1-2295.6237.31.24
SW1-3347.0246.31.40
SW2-1205.5255.20.80
SW2-2268.3266.11.01
SW2-3306.0275.11.11
SW3-1192.1269.90.72
SW3-2244.8280.80.88
SW3-3282.7289.80.98
1 徐礼华,李彪,池寅,等. 钢-聚丙烯混杂纤维混凝土单轴循环受压应力-应变关系研究[J].建筑结构学报,2018,39(4):140-152.
Xu Li-hua, Li Biao, Chi Yin, et al. Experimental investigation on stress-strain relation of steel-polypropylene hybrid fiber reinforced concrete subjected to uniaxial cyclic compression[J]. Journal of Building Structures, 2018,39(4):140-152.
2 张广泰,田虎学,李宝元,等. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 材料导报, 2018, 32(14): 2396-2399, 2406.
Zhang Guang-tai, Tian Hu-xue, Li Bao-yuan, et al. Deicer-frost scaling of steel-polypropylene hybrid fiber reinforced concrete[J]. Materials Review, 2018, 32(14): 2396-2399, 2406.
3 Sukontasukkul P, Pongsopha P, Chindaprasirt P, et al. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer[J]. Construction and Building Materials, 2018, 161:37-44.
4 Afroughsabet V, Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers[J]. Construction and Building Materials, 2015, 94:73-82.
5 寇佳亮,梁兴文,邓明科. 纤维增强混凝土剪力墙恢复力模型试验与理论研究[J]. 土木工程学报, 2013, 46(10):58-70.
Kou Jia-liang, Liang Xing-wen, Deng Ming-ke. Experimental and theoretical study of restoring force model of fiber reinforced concrete shear walls[J]. China Civil Engineering Journal, 2013, 46(10):58-70.
6 党争, 梁兴文, 邓明科,等. 纤维增强混凝土剪力墙抗震性能试验研究与理论分析[J]. 建筑结构学报, 2014, 35(6):12-22.
Dang Zheng, Liang Xing-wen, Deng Ming-ke, et al. Experimental and theoretical studies on seismic behavior of fiber reinforced concrete shear walls[J]. Journal of Building Structures, 2014, 35(6):12-22.
7 邓明科,寇佳亮,梁兴文,等. 延性纤维混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(7):170-177.
Deng Ming-ke, Kou Jia-liang, Liang Xing-wen, et al. Experimental investigation on aseismic behavior of ductile fiber reinforced concrete shear walls[J]. Engineering Mechanics, 2014, 31(7): 170-177.
8 Zhao Jun, Hua-hua Dun. A restoring force model for steel fiber reinforced concrete shear walls[J]. Engineering Structures, 2014, 75:469-476.
9 Carrillo J, Pincheira J A, Alcocer S M. Behavior of low-rise, steel fiber-reinforced concrete thin walls under shake table excitations[J]. Engineering Structures, 2017, 138:146-158.
10 Seo M S, Kim H S, Truong G T, et al. Seismic behaviors of thin slender structural walls reinforced with amorphous metallic fibers[J]. Engineering Structures, 2017, 152:102-115.
11 孙绪杰,潘景龙,郑文忠. 玻璃纤维增强聚合物混凝土小型空心砌块复合墙片的抗震性能[J]. 吉林大学学报:工学版,2008,38(5):1054-1059.
Sun Xu-jie, Pan Jing-long, Zheng Wen-zhong. Anti-seismic behavior of composite GFRP-concrete small hollow block wall[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(5):1054-1059.
12 齐岳,郑文忠. 低周反复荷载下核心高强混凝土柱抗震性能试验研究[J]. 湖南大学学报:自然科学版,2009,36(12):6-12.
Qi Yue, Zheng Wen-zhong. Experimental study of the seismic behavior of concrete columns with high strength core under low cyclic loading[J]. Journal of Hunan University(Natural Sciences),2009,36(12):6-12.
13 高欣,吴晓伟,田俊. 轻骨料混凝土剪力墙非线性有限元模型的构成及影响其抗震性能的因素[J]. 吉林大学学报:工学版,2015,45(5):1428-1435.
Gao Xin, Wu Xiao-wei, Tian Jun. Structure of nonlinear finite element model of lightweight aggregate concrete share wall and the factors affecting seismic performance[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5):1428-1435.
14 Hwang S J, Lee H J. Strength prediction for discontinuity regions by softened strut-and-tie model[J]. Journal of Structural Engineering, 2002,128(12):1519-1526.
15 Paulay T, Priestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York: John Wiley & Sons,1992.
16 Hwang S J, Lee H J. Strength prediction for discontinuity regions by softened strut-and-tie model[J]. Journal of Structural Engineering, 2002, 128(12):1519-1526.
17 唐兴荣,蒋永生,丁大钧. 软化桁架理论在钢纤维高强砼低剪力墙中的应用[J]. 建筑结构学报,1993(2):2-11.
Tang Xing-rong, Jiang Yong-sheng, Ding Da-jun. Applieation of the theory of softened truss to low-rise steel fiber high strength concrete shear walls[J]. Journal of Building Structures, 1993(2):2-11.
18 梅国栋,徐礼华,鲁维妙,等. 纤维掺量对混杂纤维混凝土轴心抗拉性能的影响分析[J]. 武汉大学学报:工学版,2013,46(6):752-758.
Mei Guo-dong, Xu Li-hua, Lu Wei-miao, et al. Effect of fiber content on axial tensile properties of hybrid fiber reinforced concrete[J]. Engineering Journal of Wuhan University, 2013, 46(6):752-758.
19 安玉杰,赵国藩,黄承奎. 配筋钢纤维混凝土构件承载力计算方法的研究[J].土木工程学报,1993,26(1):38-46.
An Yu-jie, Zhao Guo-fan, Huang Cheng-kui. Study on methods for calculating bearing capacity of SFRC elements reinforced with steel bars[J]. China Civil Engineering Journal, 1993, 26(1):38-46.
20 徐礼华,黄乐,韦翠梅,等. 钢-聚丙烯混杂纤维混凝土柱抗震承载力试验研究[J]. 建筑结构学报, 2014, 35(8):95-103.
Xu Li-hua, Huang Yue, Wei Cui-mei, et al. Experimental tests of seismic bearing capacity of steel-polypropylene hybrid fiber reinforced concrete columns[J]. Journal of Building Structures, 2014, 35(8):95-103.
21 夏广政,夏冬桃. 混杂纤维增强高性能混凝土剪力墙性能研究[J]. 华中科技大学学报,2008(4):103-106.
Xia Guang-zheng, Xia Dong-tao. Research on behavior of hybrid fiber reinforced high-performance concrete shear walls[J]. Journal of Huazhong University of Science and Technology, 2008(4):103-106.
[1] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[2] Liu LIU,Wei-xing FENG. Field measurement and calculation analysis of tunnel shield tunnel construction based on NNBR model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 245-251.
[3] Wei-xiao XU,Yang CHENG,Wei-song YANG,Jia-chang JU,De-hu YU. Quasi-static test of RC frame-seismic wall dual structural system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 268-277.
[4] De-shan SHAN,Xiao ZHANG,Xiao-yu GU,Qiao LI. Analytical method for elongation of stayed-cable with catenary configuration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 217-224.
[5] Su-duo XUE,Jian LU,Xiong-yan LI,Ren-jie LIU. Influence of grid⁃jumping arrangement on static and dynamic performance of annular crossed cable⁃truss structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1687-1697.
[6] Bo WANG,Yuan-zheng DONG,Li-xin DONG. Calculation of basic wind pressure based on short⁃term wind speed data [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1739-1746.
[7] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[8] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[9] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[10] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[11] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[12] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[13] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[14] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[15] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory [J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!