Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 936-945.doi: 10.13229/j.cnki.jdxbgxb20200157

Previous Articles     Next Articles

Influence of surface treatment on basalt fiber reactive powder concrete mechanical properties and fracture characteristics

Han-bing LIU(),Xin GAO,Ya-feng GONG(),Shi-qi LIU,Wen-jun LI   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2020-03-16 Online:2021-05-01 Published:2021-05-07
  • Contact: Ya-feng GONG E-mail:lhb@jlu.edu.cn;gongyf@jlu.edu.cn

Abstract:

Coupling agent KH-550 and hydrochloric acid are used for basalt fiber surface treatment to investigate the effect of modification conditions on the mechanical properties and working performance indexes of basalt fiber-reactive powder concrete. The optimum modification conditions were selected as follows: 0.75wt% of coupling agent, 3 mol/L of hydrochloric acid, acid etching temperature of 20 ℃ and etching time of 60 min. By using acoustic emission (AE) technology, the damage characteristics of basalt fiber reactive powder concrete before and after modification were compared to determine the fracture stage and fracture mode of the sample in the fracture test. The results show that in AE parameters, the accumulative AE hit, accumulative energy and amplitude are related to the damage stage of basalt fiber reactive powder concrete, Fiber modification affects the final stage of concrete loading. In addition, during the loading process, the rise angle (RA) and the average frequency (AF) have opposite trends, and their changes are related to the fracture mode.

Key words: architecture material, surface treatment, basalt fiber, reactive powder concrete, mechanical properties, acoustic emission, fracture properties

CLC Number: 

  • TU528.5

Table 1

Basalt fiber performance index"

性 能规范要求取值指标
线密度/tex2400±1202392
断裂强度/(N·km·g-1≥0.400.69
拉伸强度/MPa≥20002836
弹性模量/GPa≥8587
断裂伸长率/%≥2.53

Table 2

Mix ratio of BFRPC"

水泥石英砂硅灰石英粉玄武岩纤维减水剂
835939209309416752.17

Table 3

Orthogonal experiment scheme"

组号盐酸浓度/(mol·L-1)刻蚀时间/min刻蚀温度/℃
113020
216040
319060
423040
526060
629020
733060
836020
939040

Fig.1

Schematic diagram of sensor layout"

Fig.2

Compressive strength of BFRPC withmass fraction of KH-550 solution"

Fig.3

Flexural strength of BFRPC with massfraction of KH-550 solution"

Fig.4

Fluidity of BFRPC with massfraction of KH-550 solution"

Fig.5

Range analysis of flexural strength"

Table 4

Variance analysis of flexural strength"

方差来源离差平方和F临界值
误差0.67-9.0
盐酸浓度3.675.499.0
刻蚀时间1.131.699.0
刻蚀温度0.550.829.0

Fig.6

Range analysis of compressive strength"

Table 5

Variance analysis of compressive strength"

方差来源离差平方和F临界值
误差47.91-9.0
盐酸浓度0.010.009.0
刻蚀时间10.240.219.0
刻蚀温度22.110.469.0

Fig.7

Range analysis of fluidity"

Table 6

Variance analysis of fluidity"

方差来源离差平方和F临界值
误差0.83-9.0
盐酸浓度1.501.8149.0
刻蚀时间2.242.7059.0
刻蚀温度0.340.4169.0

Fig.8

History curves of load level versuscumulative AE features"

Fig.9

Relationship diagram of amplitude-load level"

Fig.10

Relationship diagram of moving averageof RA and AF-load level"

Fig.11

Relationship diagram of cumulative RA value,cumulative AF value-load level"

1 Richard Pierre, Cheyrezy Marcel. Compositi-on of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
2 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社, 1999.
3 吴炎海, 何雁斌. 活性粉末混凝土(RPC200)的配制实验研究[J]. 中国公路学报, 2003,16(4):44-49.
Wu Yan-hai, He Yan-bin. Experimental study on preparation of reactive powder concrete (RPC200)[J]. Journal of China Highway, 2003, 16(4): 44-49.
4 Kunal S. A short review on basalt fiber[J]. International Journal of Textile Science, 2012, 1(4): 19-28.
5 程永春, 毕海鹏, 马桂荣, 等. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报:工学版,2018,48(2):460-465.
Cheng Yong-chun, Bi Hai-peng, Ma Gui-rong, et al. Pavement performance of nano-meter TiO2/CaCO3-basalt fiber composite modified asphalt[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2):460-465.
6 朱春凤, 程永春, 梁春雨, 等. 硅藻土-玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报:工学版, 2020, 50(1):165-173.
Zhu Chun-feng, Cheng Yong-chun, Liang Chun-yu, et al. Pavement performance test of diatomite-basalt fiber composite modified asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1):165-173.
7 汪晖. 玄武岩纤维活性粉末混凝土性能研究[D]. 哈尔滨: 哈尔滨工业大学建筑与土木工程学院, 2013.
Wang Hui. Research of the properties of basalt fiber reactive powder concrete[D]. Harbin:College of Architecture and Civil Engineering, Harbin Institute of Technology, 2013.
8 Liu Han-bing, Liu Shi-qi, Zhou Pei-lei, et al. Mechanical properties and crack classification of basalt fiber RPC based on acoustic emission parameters[J]. Applied Sciences, 2019, 19(18):3931-3942.
9 张运华, 姚丽萍, 徐仕进, 等. 表面处理玄武岩纤维增强水泥基复合材料力学性能[J]. 复合材料学报, 2017, 34(5):1159-1166.
Zhang Yun-hua, Yao Li-ping, Xu Shi-jin, et al. Mechanical properties of cement matrix composites reinforced with surface treated basalt fibers[J]. Acta Materiae Compositse Sinica, 2017, 34(5):1159-1166.
10 王晓东, 云斯宁, 张太宏. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83.
Wang Xiao-dong, Yun Si-ning, Zhang Tai-hong. Advances in basalt fiber-reinforced composites modified by silane coupling agents[J]. Materials Reports, 2017, 31(5): 77-83.
11 柳力, 刘朝晖, 向宇. 硅烷偶联剂改性玄武岩纤维的机理及其路用性能[J]. 建筑材料学报, 2017, 20(4):623-629.
Liu Li, Liu Zhao-hui, Xiang Yu. Mechanism and road performance of basalt fiber modified by silane coupling agent[J]. Journal of Building Materials, 2017, 20(4):623-629.
12 Nair A, Cai C S. Acoustic emission monitoring of bridges: review and case studies[J]. Engineering Structures,2010, 32(6):1704-1714.
13 Aggelis D G, Soulioti D V, Sapouridis N, et al. Acoustic emission characterization of the fracture process in fibre reinforced concrete[J]. Construction and Building Materials, 2011, 25(11): 4126-4131.
14 张璇子, 陈红迁, 王志勇. 混凝土材料三点弯曲破坏的声发射特性[J]. 实验力学, 2010, 25(4): 457-462.
Zhang Xuan-zi, Chen Hong-qian, Wang Zhi-yong. Acoustic emission characteristics of three points bending failure of concrete materials[J]. Experimental Mechanics, 2010, 25(4): 457-462.
15 丁幼亮, 邓扬, 李爱群. 声发射技术在桥梁结构健康监测中的应用研究进展[J]. 防灾减灾工程学报, 2010, 30(3): 341-351.
Ding You-liang, Deng Yang, Li Ai-qun. Advances in researches on application of acoustic emission technique to health monitoring for bridge structures[J]. Journal of Disaster Prevention Engineering, 2010,30(3):341-351.
16 . 公路工程水泥及水泥混凝土试验规程[S].
17 . 水泥胶砂强度检验方法(ISO法)[S].
18 Fan X Q, Hu S W, Lu J, et al. Acoustic emission properties of concrete on dynamic tensile test[J]. Construction and Building Materials, 2016, 114(1):66-75.
19 Miller B, Muri P, Rebenfeld L. A microbond method for determination of the shear strength of a fiber /resin interface[J]. Composites Science & Technology, 1987, 28(1):17-32.
20 张楚楚. 玄武岩纤维增强水泥基材料及其复合梁高性能化研究[D]. 南京:东南大学建筑与土木工程学院, 2018.
Zhang Chu-chu, The study on high performance of the basalt fibers reinforced cement-based materials and its composite beams[D]. Nanjing: College of Architecture and Civil Engineering, Southeast University, 2018.
21 杨军. 玄武岩纤维对高性能混凝土性能影响的研究[D]. 成都: 西南交通大学土木工程学院, 2015.
Yang Jun. The research on the effects of basalt fiber on high-performance concrete[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong University,2015.
22 Behnia A, Chai H K, Yorikawa M, et al. Integrated non-destructive assessment of concrete structures under flexure by acoustic emission and travel time tomography[J]. Construction & Building Materials, 2014, 67(6): 202-215.
23 Siracusano G, Lamonaca F, Tomasello R, et al. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform[J]. Mechanical Systems & Signal Processing, 2016, 75(2):109-122.
24 Li D, Du F. Monitoring and evaluating the failure behavior of ice structure using the acoustic emission technique[J]. Cold Regions Science and Technology, 2016, 129(1):51-59.
25 Soulioti D, Barkoula N M, Paipetis A, et al. Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction & Building Materials, 2009, 23(12):3532-3536.
[1] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[2] Jiang YU,Zhi-hao ZHAO,Yong-jun QIN. Damage of reinforced concrete shear beams based on acoustic emission and fractal [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 620-630.
[3] Yi LI,Dong-di HUANG,Kai-feng YU,Ji-cai LIANG,Xiao-ling HE,Xi-tong REN. Performance of silica carbon black modified basalt fiber reinforced polyamide 6 composite [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 181-187.
[4] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[5] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[6] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[7] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[8] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[9] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[10] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[11] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[12] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[13] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[14] DENG Cheng-jiang, HE Xiao-cong, XING Bao-ying, WANG Yu-qi, ZENG Kai, DING Yan-fang. Mechanical properties of self-piercing riveted lap joints in dissimilar metal sheets of aluminum and copper [J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
[15] ZHANG Lin, ZHAO Hong-wei, YANG Yi-han, MA Zhi-chao, HUANG Hu, MA Zhi-chao. Molecular dynamics simulation of nanoindentation of single-layer graphene sheet [J]. 吉林大学学报(工学版), 2013, 43(06): 1558-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!