Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 585-595.doi: 10.13229/j.cnki.jdxbgxb20200799

Previous Articles    

Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model

Yu-quan YAO1(),Jian-gang YANG1,2,3(),Jie GAO1,2,3,Liang SONG4   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.School of Civil Engineering and Architecture,East China Jiaotong University,Nanchang 330013,China
    3.Institute of Road Engineering,East China Jiaotong University,Nanchang 330013,China
    4.Xinjiang Communications Construction Group Co. ,Ltd. ,Urumqi 830057,China
  • Received:2020-10-19 Online:2022-03-01 Published:2022-03-08
  • Contact: Jian-gang YANG E-mail:yaoyuquanchd@outlook.com;2851@ecjtu.edu.cn

Abstract:

In order to overcome the risk of insufficient moisture stability of the recycled hot-mix asphalt (RHMA), this work aims to optimize the material design of RHMA based on the performance-cost model by considering the moisture stability as the control index. First, the quadratic regression model involves independent variables (reclaimed asphalt pavement (RAP) content, asphalt content, and aggregate gradation) and dependent variable (moisture stability) was established. Second, the cost model was proposed covering the whole construction process, thereby the optimal material design model of RHMA was drawn. Finally, the optimal design parameters were calculated with the performance-cost model by jointly using the genetic algorithm and linear comprehensive evaluation method. The results show that the response surface can effectively address the material design of RHMA, and the independent variables were found significant to the moisture stability of HRMA. The proposed model was proved valid in project of the Sanming section of Fuzhou-Yinchuan expressway, the optimized cost was 26.7% lower than the actual cost at the same moisture stability control objective, and the optimized material parameters of HRMA for RAP content, asphalt content, and gradation parameter were 51%, 4.61%, and 0.445, respectively.

Key words: road engineering, recycled asphalt mixture, response surface method, performance-cost model, moisture stability, optimal design

CLC Number: 

  • U416.2

Table 1

Design parameter values"

因素水平
RAP掺量A/%204060
沥青含量B/%4.24.54.8
矿料级配C级配I级配II级配III

Fig.1

Composition of production and construction cost of recycled asphalt mixture"

Table 2

Model parameters"

物理量含义符号取值
再生沥青混合料施工面积/m2a1105
铺装厚度/mh0.06
RHMA标准压实密度/(t?m-3D12.420
再生剂的用量(RAP质量比)/%A10.1
RAP油石比/%B14.94
RAP铣刨、破碎与筛分费用/(元·t-1p110
粗集料费用/(元·t-1p258
细集料费用/(元·t-1p345
新沥青费用/(元·t-1p44 800
再生剂费用/(元·t-1p520 000
运输费用/[元·(t?km)-1p60.5
RHMA生产费用/(元·t-1p720
RHMA摊铺碾压费用/(元·m-2p85
RAP运距/kml160
粗细新集料运距/kml2150
沥青运距/kml3200

Fig.2

Calculation process of genetic algorithm"

Fig.3

Technical route"

Table 3

Technical performance of asphalt"

指标试验结果试验方法
25 ℃针入度/(0.1 mm)48.1T0604
软化点/℃74.9T0606
5 ℃延度/cm30.0T0605

Table 4

Technical performance of virgin aggregate"

集料规格/mm压碎值/%

表观相

对密度

针片状/%黏附性
19~26.5-2.7496.35级
16~19-2.7317.85级
13.2~16-2.7148.75级
9.5~13.215.32.74111.4-
4.75~9.5-2.73017.5-
2.36~4.75-2.726--
1.18~2.36-2.711--
0.6~1.18-2.717--
0.3~0.6-2.721--
0.15~0.3-2.709--
0.075~0.15-2.733--
技术要求≤28≥2.5粒径>9.5,≤15≥4级
粒径<9.5,≤20
试验方法T0316T0304T0312T0616

Table 5

Technical performance of mineral powder"

试验项目技术要求试验结果试验方法

通过率

/%

0.6 mm100.0100.0T0351
0.3 mm95.0~100.0100.0
0.15 mm90.0~100.096.7
0.075 mm80.0~100.081.5
外观无团粒结块无团粒结块-
加热安定性实测记录无明显变色T0355
表观相对密度≥2.52.721T0304

Table 6

Gradation of RAP before and after asphalt extraction"

筛孔/mm0~8 mm8~12 mm12~20 mm
抽提前抽提后抽提前抽提后抽提前抽提后
沥青含量/%-6.85-3.95-3.25
26.5100.0100.0100.0100.0100.0100.0
19100.0100.0100.0100.099.799.8
16100.0100.0100.0100.079.490.4
13.2100.0100.099.8100.046.970.2
9.5100.0100.083.591.05.331.2
4.7571.787.98.126.11.418.8
2.3633.959.71.618.50.814.4
1.1816.344.50.916.00.612.3
0.65.431.20.713.40.510.2
0.31.120.90.49.90.37.5
0.150.516.40.27.80.15.8
0.0750.111.20.15.30.04.1

Table 7

Properties of RAP"

材料类型指标试验结果试验方法
RAP含水率/%0.53文献[21]中的附录B
砂当量/%85.7
RAP中的沥青25 ℃针入度/(0.1 mm)28.5T0604
软化点/℃70.7T0606
5 ℃延度/cm脆断T0605
60 ℃动力黏度/(Pa?s)1980.0T0620
RAP中的粗集料压碎值/%15.9T0316
针片状含量/%14.1T0312
RAP中的细集料棱角性31.5T0345

Fig.4

Design gradation curves"

Fig.5

Specimen preparation process"

Table 8

Test results"

试验编号因素水平RT2/MPaRT1/MPaTSR/%
A/%B/%C
要求-----≥80
1204.2II1.271.7373.34
2604.2II1.211.8067.22
3204.8II1.481.6589.70
4604.8II1.501.8581.08
5204.5I1.291.5284.87
6604.5I1.431.8378.14
7204.5III1.461.5594.19
8604.5III1.812.0389.16
9404.2I1.311.6778.44
10404.8I1.401.7281.40
11404.2III1.431.7382.66
12404.8III1.611.6895.83
13404.5II1.501.6392.02
14404.5II1.491.6391.41
15404.5II1.491.6490.85
16404.5II1.511.6492.07
17404.5II1.491.6590.30

Table 9

Results of variance analysis of water stability index"

指标RAP掺量A沥青含量B矿料级配C
RT2F3.68010.79014.090
p0.0960.0130.007
显著性不显著++
RT1F24.5600.0221.370
p0.0020.8870.280
显著性++不显著不显著
TSRF21.48665.71846.551
p0.0020.0000.000
显著性++++++

Fig.6

Influence of asphalt content and RAP content on moisture stability underdifferent grading index n"

Fig.7

Variation law of moisture stability performance and cost"

Fig.8

Trend of the growth rate of production and construction cost"

Fig.9

Trend of the comprehensive performance score"

Fig.10

Trend of performance and cost for materials after optimization"

1 Gao Jie, Yang Jian-gang, Yu Di, et al. Reducing the variability of multi-source reclaimed asphalt pavement materials: a practice in China[J]. Construction and Building Materials, 2021, 278:No.122389.
2 仰建岗,姚玉权,孙晨.不同工况对就地热再生沥青混合料性能的影响[J]. 公路交通科技, 2019, 36(10):14-24.
Yang Jian-gang, Yao Yu-quan, Sun Chen. Influence of different working conditions on hot in-place recycled asphalt mixture performance[J]. Journal of Highway and Transportation Research and Development, 2019, 36(10):14-24.
3 Yang Jian-gang, Tao Wen-jie, Gao Jie, et al. Measurement of particle agglomeration and aggregate breakdown of reclaimed asphalt pavement[J]. Construction and Building Materials, 2021, 296:No.123681.
4 Madrigal D P, Lannone A, Martinez A H, et al. Effect of mixing time and temperature on cracking resistance of bituminous mixtures containing reclaimed asphalt pavement material[J]. Journal of Materials in Civil Engineering, 2017, 29(8):No.04017058.
5 左锋,叶奋,宋卿卿. RAP掺量对再生沥青混合料路用性能影响[J]. 吉林大学学报:工学版, 2020, 50(4):1403-1410.
Zuo Feng, Ye Fen, Song Qing-qing. Influence of RAP content on road performance of recycled asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4):1403-1410.
6 Farooq M A, Mir M S, Sharma A. Laboratory study on use of RAP in WMA pavements using rejuvenator[J]. Construction and Building Materials, 2018, 168(20):61-72.
7 Zhu Yue-feng, Li Yan-wei, Si Chun-di, et al. Laboratory evaluation on performance of fiber-modified asphalt mixtures containing high percentage of RAP[J]. Advances in Civil Engineering, 2020(4):1-9.
8 Lu D X, Saleh M, Nguyen N H T. Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content[J]. Construction and Building Materials, 2019, 197(10):792-802.
9 Zhou Zhou, Gu Xing-yu, Li Qiang, et al. Use of rejuvenator, styrene-butadiene rubber latex, and warm-mix asphalt technology to achieve conventional mixture performance with 50% reclaimed asphalt pavement[J]. Transportation Research Record, 2016, 2575(1):160-167.
10 Kusam A, Malladi H, Tayebali A A, et al. Laboratory evaluation of workability and moisture susceptibility of warm-mix asphalt mixtures containing recycled asphalt pavements[J]. Journal of Materials in Civil Engineering, 2016, 29(5):No.04016276.
11 周刚,李培国,陈天泉,等. 聚酯纤维及沥青对高RAP掺量沥青混合料路用性能的研究[J]. 重庆交通大学学报:自然科学版,2016,35(4):40-46, 105.
Zhou Gang, Li Pei-guo, Chen Tian-quan, et al. Polyester fiber content and asphalt content's impact on the road performance of high RAP content asphalt mixture[J]. Journal of Chongqing Jiaotong University(Natural Sciences),2016, 35(4):40-46, 105.
12 Jahanbakhsh H, Karimi M M, Naseri H, et al. Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: Performance assessment, cost analysis, and environmental impact[J]. Journal of Cleaner Production, 2020, 244: No.118837.
13 单景松,李峰,杜贝贝. 基于价值工程的国省道沥青路面结构决策[J]. 公路交通科技, 2014, 31(1):26-31.
Shan Jing-song, Li Feng, Du Bei-bei. Decision-making of asphalt pavement structure of national and provincial highways based on value engineering[J]. Journal of Highway and Transportation Research and Development, 2014, 31(1):26-31.
14 Bressi S, Pittet M, Dumont A G, et al. A framework for characterizing RAP clustering in asphalt concrete mixtures[J]. Construction and Building Materials, 2016, 106: 564-574.
15 靳卫东, 梁春雨. 公路施工组织与概预算[M]. 2版. 北京: 人民交通出版社, 2020.
16 马涛, 赵永利, 黄晓明. 沥青路面厂拌热再生关键技术[M]. 南京:东南大学出版社, 2015.
17 张文修, 梁怡. 遗传算法的数学基础[M]. 2版. 西安: 西安交通大学出版社, 2003.
18 熊颖,陈维,姚玉权,等. 基于马歇尔指标的就地热再生沥青混合料再生剂用量分析[J]. 公路交通科技:应用技术版,2019,15(8):80-84.
Xiong Ying, Chen Wei, Yao Yu-quan, et al. Analysis on the amount of regenerant in hot recycling asphalt mixture based on Marshall index[J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2019, 15(8): 80-84.
19 . 公路工程集料试验规程 [S].
20 . 公路工程沥青及沥青混合料试验规程 [S].
21 . 公路沥青路面再生技术规范 [S].
22 樊旭英,李印冬,李章珍,等. 再生沥青混合料级配优化设计[J]. 公路与汽运,2018(4):62-65.
Fan Xu-ying, Li Yin-dong, Li Zhang-zhen, et al. Gradation optimization design of recycled asphalt mixture[J]. Highways & Automotive Applications,2018(4):62-65.
23 Concha J L, Norambuena-Contreras J. Thermophysical properties and heating performance of self-healing asphalt mixture with fibres and its application as a solar collector[J]. Applied Thermal Engineering, 2020, 178: No.115632.
24 . 公路沥青路面施工技术规范 [S].
[1] Quan-ping XIA,Jiang-ping GAO,Hao-yuan LUO,Qi-gong ZHANG,Zhi-jie LI,Fei YANG. Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 541-549.
[2] Hong-xun ZHAO,Zhao-jun YANG,Chuan-hai CHEN,Hai-long TIAN,Li-ping WANG. Optimal design of acceleration test of motorized spindle of numerical control Machine Tool considering parameter weight [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 409-416.
[3] Zi-ling ZHANG,Xiong HU,Yin QI,Wei WANG,Zhi-qiang TAO,Zhi-feng LIU. An approach for error allocation of machine tool based on vector projection response surface method [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 384-391.
[4] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
[5] Wu-ping RAN,Hui-min CHEN,Ling LI,Li-qun FENG. Evolution law and model estimation and modification of resilience modulus of coarse grained soil subgrade under wet and dry cycle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2079-2086.
[6] Chang-ping WEN,Huan-xia REN. Constitutive relation with double yield surfaces of bioenzyme⁃treated expansive soil based on Lade model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1716-1723.
[7] Zhe-pu XU,Qun YANG. Short⁃term maintenance operation start time optimization based on real⁃time traffic map data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1763-1774.
[8] Yuan-yuan WANG,Lu SUN,Wei-dong LIU,Jin-shun XUE. Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1342-1348.
[9] Yong PENG,Han-duo YANG,Xue-yuan LU,Yan-wei LI. Effect of void characteristics on virtual shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
[10] Wei-gang ZHU,Chao ZHU,Ya-qiu ZHANG,Hai-bin WEI. Construction and quality evaluation of digital elevation model based on convolution grid surface fitting algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1073-1080.
[11] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[12] Ya-feng GONG,Yun-ze PANG,Bo WANG,Guo-jin TAN,Hai-peng BI. Mechanical properties of new prefabricated box culvert structure based on road conditions in Jilin Province [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 917-924.
[13] En-hui YANG,Jia-qiu XU,You-zhi TANG,Ao LI,Yan-jun QIU. Effect of warm mixing agents on fracture and aging properties of asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 604-610.
[14] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[15] Kai-yu YANG,Wei LIU,Tian-hao WANG,Xian-li YU,Yin-han GAO,Xi-lai MA. A calculation method for uncertainty of crosstalk in multi⁃conductor transmission line [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 747-753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!