Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (7): 1541-1551.doi: DOI:10.13229/j.cnki.jdxbgxb20210132

Previous Articles    

Optimization of tooth surface modification based on a two-stage reduction gear system

Hong-bo YANG1(),Wen-ku SHI1(),Zhi-yong CHEN1,Nian-cheng GUO2,Yan-yan ZHAO2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.Automotive Research Institute,China National Heavy Duty Truck (Group Corp. ),Jinan 250100,China
  • Received:2021-02-16 Online:2022-07-01 Published:2022-08-08
  • Contact: Wen-ku SHI E-mail:yanghb20@mails.jlu.edu.cn;shiwk@jlu.edu.cn

Abstract:

The prominent vibration and noise problems are commonly exist in the initial design stage of gear system. To solve this problem, this paper takes the two-stage reduction gear system carried by an electric drive system as the research object. The minimum fluctuation of transmission error, minimum root mean square value of vibration acceleration in the direction of meshing line, and minimum load density of discrete points on meshing line are taken as optimization objectives. The tooth surface micro modification parameters are taken as design variable, and the algorithm NSGA-Ⅱ is used to conduct multi-objective optimization. The loaded tooth surface contact analysis(LTCA) is carried out based on the software MASTA. The results show that, compared with unmodified stage, the fluctuation of meshing transmission error and system transmission error after micro modification optimization are significantly reduced, the load distribution on the tooth surface is more uniform, the maximum contact stress and the amplitude of vibration acceleration of the bearing seat are greatly decreased, and the overall dynamic performance of gear system is improved. The research ideas and methods in this paper can provide guidance for wider optimization design of gear system.

Key words: vehicle engineering, gear system, tooth surface modification, genetic algorithm, optimization design

CLC Number: 

  • TH132.41

Table 1

Macro parameters of gear pairs"

宏观参数

小齿(第一级/

第二级)

大齿(第一级/

第二级)

齿数15/1342/40
齿宽/mm12/2012/20
齿顶圆直径/mm27.794/28.08768.289/75.207
齿根圆直径/mm21.044/20.21261.539/67.332
旋向右旋/左旋左旋/右旋
螺旋角/(o)15/5
法向模数/mm1.5/1.75
法向压力角/(o)20/20
中心距/mm45/47.997
端面重合度2.8/3.08

Fig.1

MASTA simulation model of two-stage reduction gear system"

Fig.2

Direction of system power flow"

Fig.3

Instantaneous contact imprint and force vector of a single gear tooth"

Fig.4

Transmission error of gear pair meshing"

Fig.5

Contact spot on tooth surface of the 1st reduction gear pair"

Fig.6

Contact spot on tooth surface of the 2nd reduction gear pair"

Fig.7

Colormap of vibration acceleration of a bearing seat"

Fig.8

Diagram of tooth lead modification"

Fig.9

Diagram of tooth profile modification"

Fig.10

Multi-objective optimization flow chart of tooth surface modification"

Table 2

Optimized results of micro modification parameters"

修形参数第一级第二级
齿向起鼓量x1/μm55
螺旋角修形量x2/μm0.31.8
齿向左端面修形量x3/μm510
齿向右端面修形量x4/μm23
左端面修形长度y1/mm1.22.4
右端面修形长度y2/mm1.22.4
齿形起鼓量x5/μm38
压力角修形量x6/μm55
齿顶修形量x7/μm85
齿顶修形长度y3/mm0.70.7

Fig.11

Profile of tooth surface modification of the 1st reduction gear pair"

Fig.12

Profile of tooth surface modification of the 2nd reduction gear pair"

Fig.13

Transmission error of gear pair meshing after optimization"

Fig.14

Comparison of gear system transmission error before and after optimization"

Fig.15

Contact spot on tooth surface of the 1st reduction gear pair after optimization"

Fig.16

Contact spot on tooth surface of the 2nd reduction gear pair after optimization"

Fig.17

Colormap of vibration acceleration of a bearing seat after optimization"

Table 3

Quantified results of kinetic index under operating condition one"

分析指标优化前优化后减小量
1st齿轮副啮合传递误差/μm2.051.5922.44%
2nd齿轮副啮合传递误差/μm4.672.9237.47%
系统传递误差/(m·rad)0.160.0943.75%

1st齿轮副最大接触

应力/MPa

1301.561144.5012.07%

2nd齿轮副最大接触

应力/MPa

1400.011287.568.03%

轴承座振动加速度

幅值/(m·s-2

116.5497.5716.28%

Table 4

Quantified results of kinetic index under other operating conditions"

分析指标工况优化前优化后减小量
1st齿轮副啮合传递误差/μm工况二3.103.003.23%
工况三4.314.036.50%
工况四6.225.1816.72%
工况五7.286.0217.31%
2nd齿轮副啮合传递误差/μm工况二4.082.7532.60%
工况三3.572.8221.01%
工况四18.0410.3542.63%
工况五22.5114.5135.54%
系统传递误差/(m·rad)工况二0.210.1052.38%
工况三0.450.2251.11%
工况四0.610.3542.62%
工况五0.720.4931.94%
1st齿轮副最大接触应力/MPa工况二1736.201432.3117.50%
工况三2105.641820.1413.56%
工况四2430.222050.8615.61%
工况五2700.562325.6313.88%
2nd齿轮副最大接触应力/MPa工况二1840.521653.4910.16%
工况三2215.141940.0212.42%
工况四2528.552185.7613.56%
工况五2802.552430.3213.28%
轴承座振动加速度幅值/(m·s-2工况二215.92200.157.30%
工况三502.43449.1210.61%
工况四371.01337.219.11%
工况五314.33285.769.09%
1 齿轮手册编委会. 齿轮手册(上册)[M]. 北京:机械工业出版社, 1990.
2 Lee C, Lin H H, Oswald F B, et al. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high-contact-ratio spur gears[J]. ASME Journal of Mechanical Design, 1991, 113(2): 473-480.
3 Cai Y, Hayashi T. The optimum modification of tooth profile for a pair of spur gears to make its rotational vibration equal zero[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1992, 57: 3957-3963.
4 Reagor C P. An optimal gear design method for minimization of transmission error and vibration excitation [D]. Philadelphia: The Pennsylvania State University, 2010.
5 袁冰, 常山, 吴立言, 等. 对角修形对斜齿轮系统准静态及动态特性的影响研究[J]. 西北工业大学学报, 2017, 35(2): 232-239.
Yuan Bing, Chang Shan, Wu Li-yan, et al. Effect of cross modification on the quasi-static and dynamic characteristics of helical gear system [J]. Journal of Northwestern Polytechnical University, 2017, 35(2): 232-239.
6 付学中, 方宗德, 贾超, 等. 面齿轮传动啮合刚度分析与修形减振优化[J]. 振动与冲击, 2019, 38(5): 265-272.
Fu Xue-zhong, Fang Zong-de, Jia Chao, et al. Meshing stiffness analysis and optimization of vibration reduction and modification for face-gear drives [J]. Journal of Vibration and Shock, 2019, 38(5): 265-272.
7 刘欣荣, 汪中厚, 久保爱三. 基于混沌蚁群算法优化算法的齿轮传动误差研究[J]. 系统仿真学报, 2019, 31(9): 1942-1949.
Liu Xin-rong, Wang Zhong-hou, Aizoh Kubo. Research on gear transmission error based on chaotic ant swarm optimization [J]. Journal of System Simulation, 2019, 31(9): 1942-1949.
8 张容川, 周云山, 胡哓岚, 等. 双排行星齿轮系统的齿轮优化修形[J]. 汽车工程, 2018, 40(9): 1118-1124.
Zhang Rong-chuan, Zhou Yun-shan, Hu Xiao-lan, et al. The optimized gear modification for double-row planetary gear train[J]. Automotive Engineering, 2018, 40(9): 1118-1124.
9 赵宁, 康士朋, 郭辉, 等. 基于遗传算法的弧齿锥齿轮动态特性优化设计[J]. 航空动力学报, 2010, 25(10): 2396-2402.
Zhao Ning, Kang Shi-peng, Guo Hui, et al. Optimization design of spiral bevel gear's dynamic characteristics based on genetic algorithm[J]. Journal of Aerospace Power, 2010, 25(10): 2396-2402.
10 赵宁, 秋朋园, 刘贵立. 高重合度人字齿轮传动动态性能优化设计[J]. 国防科技大学学报, 2015, 37(2): 166-174.
Zhao Ning, Qiu Peng-yuan, Liu Gui-li. Optimized design of dynamic behavior of double helical gears with high contact ratio[J]. Journal of National University of Defense Technology, 2015, 37(2): 166-174.
11 Marcello F, Farhad S S, Gabriele B, et al. Dynamic optimization of spur gears[J]. Mechanism and Machine Theory, 2011, 46(4): 544-557.
12 杨硕文, 唐进元. 一种新的直齿轮复合修形设计方法 [J]. 中南大学学报:自然科学版, 2019, 50(5): 1082-1088.
Yang Shuo-wen, Tang Jin-yuan. A new design method for compound modification of spur gear[J]. Journal of Central South University (Science and Technology), 2019, 50(5): 1082-1088.
13 蒋进科, 方宗德, 苏进展. 宽斜齿轮多目标修形优化设计[J]. 西安交通大学学报, 2014, 48(8): 91-97.
Jiang Jin-ke, Fang Zong-de, Su Jin-zhan. Multi-objective optimal and modified design for wide helical gear[J]. Journal of Xi'an Jiaotong University, 2014, 48(8): 91-97.
14 贾超, 方宗德. 高速齿轮传递误差和啮入冲击的激励模拟及齿面优化修形[J].振动与冲击, 2019, 38(23): 103-109, 138.
Jia Chao, Fang Zong-de. Simulation for transmission error and mesh-in impact excitation of high speed gears and their tooth surface optimal modification[J]. Journal of Vibration and Shock, 2019, 38(23): 103-109, 138.
15 Lei Y L, Hou L G, Fu Y, et al. Research on vibration and noise reduction of electric bus gearbox based on multi-objective optimization[J]. Applied Acoustics, 2020,158: 107037.
16 Lei Y L, Hou L G, Fu Y, et al. Transmission gear whine control by multi-objective optimization and modification design[R]. Detroit: SAE World Congress Experience-Autonomous Technology, 2018.
17 赵宁, 秋朋园, 刘贵立. 高重合度人字齿轮轮齿最佳修形优化设计[J]. 国防科技大学学报, 2015, 37(1): 165-170.
Zhao Ning, Qiu Peng-yuan, Liu Gui-li. Modification optimization of double helical gears with high contact ratio [J]. Journal of National University of Defense Technology, 2015, 37(1): 165-170.
18 王峰, 方宗德, 李声晋, 等. 人字齿轮系统振动传递分析优化与试验验证 [J]. 机械工程学报, 2015, 51(1): 34-42.
Wang Feng, Fang Zong-de, Li Sheng-jin, et al. Analysis optimization and experimental verification of herringbone gear transmission system[J]. Journal of Mechanical Engineering, 2015, 51(1): 34-42.
19 贾超, 方宗德, 张永振. 高速啮合人字齿轮多目标优化修形[J]. 哈尔滨工业大学学报, 2017, 49(1): 166-172.
Jia Chao, Fang Zong-de, Zhang Yong-zhen. Multi-objective optimal modification for internal double helical gears with high speed[J]. Journal of Harbin Institute of Technology, 2017, 49(1): 166-172.
20 刘玄, 方宗德, 赵宁. 人字齿轮小轮轴向窜动的多目标复合修行优化[J]. 西安交通大学学报, 2021, 55(1): y1-y9.
Liu Xuan, Fang Zong-de, Zhao Ning. Multi-objective compound modification optimization of pinion axial floating for the double helical gears[J]. Journal of Xi'an Jiaotong University, 2021, 55(1): y1-y9.
21 刘艳芳, 赖俊斌, 岳会军, 等. 斜齿轮振动噪声分析方法[J]. 振动、测试与诊断, 2016, 36(5): 960-966.
Liu Yan-fang, Lai Jun-bin, Yue Hui-jun, et al. Research on the noise and vibration of the helical gear[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 960-966.
22 Deb K, Member A, Pratap A, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
23 Ahmed F, Deb K. Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms[J]. Soft Computing, 2013, 17(7):1283-1299.
24 高媛. 非支配排序遗传算法(NSGA)的研究与应用 [D]. 杭州: 浙江大学信息科学与工程学院, 2006.
Gao Yuan. Reaserch and application of fast non-dominated sorting genetic algorithm[D]. Hangzhou: College of Information Science and Engineering, Zhejiang University, 2006.
[1] Shuai HAO,Chuan-tai CHENG,Jun-nian WANG,Jun-yuan ZHANG,You YU. Ergonomic optimization and test evaluation of sports SUV cockpit layout design [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1477-1488.
[2] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[3] Xiong LI,Feng-chong LAN,Ji-qing CHEN,Fang TONG. Comparison of injuries in front impact between Hybird III dummy model and CHUBM human biomechanical model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1264-1272.
[4] Ying-chao ZHANG,Yun-hang LI,Zi-yu GUO,Guo-hua WANG,Zhe ZHANG,Chang SU. Optimization of the aerodynamic drag reduction of a cab behind engine vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 745-753.
[5] Wen-ku SHI,Shu-guang ZHANG,You-kun ZHANG,Zhi-yong CHEN,Yi-fei JIANG,Bin-bin LIN. Parameter identification of magnetorheological damper model with modified seagull optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 764-772.
[6] Jie LI,Tao CHEN,Wen-cui GUO,Qi ZHAO. Pseudo excitation method of vehicle non-stationary random vibration in space domain and its application [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 738-744.
[7] Wei LI,Hai-sheng SONG,Hao-yu LU,Wen-ku SHI,Qiang WANG,Xiao-jun WANG. Linear identification method of hysteresis characteristic of composite leaf springs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 829-836.
[8] Wei-min ZHUANG,Shen CHEN,Di WU. Influence of strengthening form of CFRP on transverse impact performance of steel tube [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 819-828.
[9] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[10] Li-jie ZHANG,Xi-ta A,Xiao TIAN,Wen LI. Multi⁃objective optimization design of accelerated degradation test based on Gamma process [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 361-367.
[11] Wei-min ZHUANG,Shen CHEN,Nan WANG. Influence on thermal stress of autobody steel-aluminum clinch-adhesive connection structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 70-78.
[12] Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62.
[13] Xing-jun HU,Jing-long ZHANG,Yu-fei LUO,Li XIN,Sheng LI,Jin-rui HU,Wei LAN. Influence investigation of cooling tube structure and airflow direction on thermal⁃hydraulic performance of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1933-1942.
[14] Jian-bin CHEN,Song-ze ZHOU,Feng-yong FEI,Yong-long CHEN,Guo-ping LING. Influences of interference fit and knurling connection type on press fitting failure of assembled camshaft [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1959-1966.
[15] Jian-xin FENG,Qiang WANG,Ya-lei WANG,Biao XU. Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1990-1996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!