Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (8): 1777-1785.doi: 10.13229/j.cnki.jdxbgxb20210201

Previous Articles    

Modeling and compression simulation of 3D solid aluminum foam with random cell wall thickness

Wei-min ZHUANG(),En-ming WANG   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-03-17 Online:2022-08-01 Published:2022-08-12

Abstract:

To solve the problems existing in geometric modeling and simulation calculation of shell aluminum foam model, based on the theory of Voronoi model, the modeling method and its implementation process of 3D solid aluminum foam model with random cell wall thickness are put forward. The model of solid aluminum foam is established by using ABAQUS foam aluminum modeling plug-in program written in Python language, and the quasi-static compression finite element simulation analysis of aluminum foam is carried out. The mechanical behavior, deformation mode and the calculated stress-strain curve of solid model and shell model in simulation are compared and analyzed. The results show that the simulation results and the deformation mode of the solid model are closer to the experiment, the stress-strain curve of the solid model is smoother and it has smaller fluctuations, the solid model is more reasonable than the model of the shell model in the compression process.

Key words: metallic material, closed-cell aluminum foam, Voronoi model, random cell wall thickness, solid model, quasi-static compression

CLC Number: 

  • TG146.21

Fig.1

Voronoi model algorithm and cell wall thickness addition"

Fig.2

Random cell wall thickness"

Fig.3

Algorithm flowchart"

Fig.4

Foam aluminum modeling plug-in interface"

Fig.5

Foam aluminum plug-in modeling flowchart"

Fig.6

Comparison of different foam aluminum model"

Fig.7

Generation of porosity error of shell model"

Table 1

Porosity calculation error of shell model"

壁厚/mm壳体模型计算孔隙率/%真实孔隙率/%误差/%相对误差/%
0.190.690.80.20.2
0.283.184.00.91.1
0.374.776.72.02.6
0.466.469.73.34.7
0.558.063.75.79.0

Fig.8

Assembly model"

Fig.9

Mesh of foam aluminum model"

Table 2

Model parameters"

模型序号孔隙率/%胞孔数量/个壁厚/mm
0.1-shell90.63000.1
0.1-solid90.83000.1
0.2-shell83.13000.2
0.2-solid84.03000.2
0.3-shell74.73000.3
0.3-solid76.73000.3

Fig.10

Comparison of experimental and simulated stress-strain curves"

Fig.11

Stress-strain curves of simulation"

Fig.12

Experimental and simulation comparison of quasi-static compression of aluminum foam"

1 张士卫. 泡沫金属的研究与应用进展[J]. 粉末冶金技术, 2016, 34(3): 222-227.
Zhang Shi-wei. Foam metal research and application progress[J]. Powder Metallurgy Technology, 2016, 34(3): 222-227.
2 陈明营, 纪箴, 贾成厂, 等. 泡沫铝及其复合材料的研究进展[J]. 粉末冶金技术, 2019, 37(1): 68-73.
Chen Ming-ying, Ji Zhen, Jia Cheng-chang, et al. Research progress of aluminum foam and its composites[J]. Powder Metallurgy Technology, 2019, 37(1): 68-73.
3 张君媛, 张秋实, 刘卫国, 等.泡沫铝填充矩形截面薄壁梁压溃力理论表达式[J]. 吉林大学学报: 工学版, 2016, 46(3): 745-750.
Zhang Jun-yuan, Zhang Qiu-shi, Liu Wei-guo, et al. Crushing model of rectangular section thin-walled beam filled with aluminum foam[J]. Journal of Jilin University(Engineering and Technology Edition),2016, 46(3): 745-750.
4 刘家安, 于思荣, 朱先勇. Zn-22Al泡沫夹芯复合板的三点弯曲性能[J]. 吉林大学学报: 工学版, 2012, 42(2): 344-348.
Liu Jia-an, Yu Si-rong, Zhu Xian-yong. Three-point bending properties of Zn-22A1 foam sandwich panel[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(2): 344-348.
5 Zhang X, Tang L, Liu Z, et al. Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D voronoi model[J]. Mechanics of Materials, 2017, 104: 73-84.
6 Li Z, Zhang J, Fan J, et al. On crushing response of the three-dimensional closed-cell foam based on voronoi model[J]. Mechanics of Materials, 2014, 68: 85-94.
7 Shi X, Liu S, Nie H, et al. Study of cell irregularity effects on the compression of closed-cell foams[J]. International Journal of Mechanical Sciences, 2018, 135: 215-225.
8 Randrianalisoa J, Baillis D, Martin C L, et al. Microstructure effects on thermal conductivity of open-cell foams generated from the laguerre-voronoi tessellation method[J]. International Journal of Thermal Sciences, 2015, 98: 277-286.
9 Vengatachalam B, Poh L H, Liu Z S, et al. Three dimensional modelling of closed-cell aluminium foams with predictive macroscopic behaviour[J]. Mechanics of Materials, 2019, 136: 103067.
10 杨宝, 汤立群, 刘逸平, 等. 冲击条件下泡沫铝的细观变形特征分析[J]. 爆炸与冲击, 2012, 32(4): 399-403.
Yang Bao, Tang Li-qun, Liu Yi-ping, et al. Meso deformation characteristics analysis of aluminum foam under impact[J]. Explosion and Shock Waves, 2012, 32(4): 399-403.
11 王巍, 安子军, 彭春彦, 等. 闭孔泡沫材料3-D几何建模及力学性能分析[J]. 塑性工程学报, 2017, 24(4): 194-200.
Wang Wei, An Zi-jun, Peng Chun-yan, et al. 3-D geometry modeling and mechanical properties analysis of closed-cell foams[J]. Journal of Plasticity Engineering, 2017, 24(4): 194-200.
12 程振, 方秦, 张锦华, 等. 闭孔泡沫金属三维细观模型建模方法[J]. 工程力学, 2017, 34(8): 212-221.
Cheng Zhen, Fang Qin, Zhang Jin-hua, et al. Mesoscopic methodology for the three-dimensional modelling of closed-cell metallic foam[J]. Engineering Mechanics, 2017, 34(8): 212-221.
13 Li Q M. Compressive strain at the onset of densification of cellular solids[J]. Journal of Cellular Plastics, 2006, 42(5): 371-392.
14 Liu Y, Yu J, Zheng Z, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22): 3988-3998.
[1] Yin-bao TIAN,Jun-qi SHEN,Sheng-sun HU,Jian GOU. Effect of EP/EN Balance on droplet transfer and weld formation of Al alloy by VP⁃CMT [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1663-1668.
[2] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[3] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[4] Xue-wen CHEN,Ji-ye WANG,Xi-qing YANG,Tao HUANG,Ke-xing SONG. Hot deformation behavior and dislocation density evolution regularity of Cr8 alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 91-99.
[5] Jin-guo WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Zhi-qiang WANG. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
[6] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[7] GUAN Qing-feng,ZHANG Fu-tao,PENG Tao,LYU Peng,LI Yao-jun,XU Liang,DING Zuo-jun. Hot deformation behavior of 9%Cr steel contained B and Co elements [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1799-1805.
[8] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[9] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[10] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[11] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[12] YANG Xiao-hong, HANG Wen-xian, QIN Shao-gang, LIU Yong-bing, LIU Li-ping. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding [J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[13] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[14] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[15] ZHANG Xue-guang, LIU Chun-guo, ZHENG Yuan, JIANG Zhong-hai, LI Xiang-ji. Forming limit prediction of aluminum alloy based on ductile damage and shear damage [J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!