Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2192-2202.doi: 10.13229/j.cnki.jdxbgxb20220419
Jin-wu GAO1,2(),Zhi-huan JIA1,2,Xiang-yang WANG1,2,Hao XING3,4
CLC Number:
1 | Liu D C, Lin R, Feng B, et al. Investigation of the effect of cathode stoichiometry of proton exchange membrane fuel cell using localized electrochemical impedance spectroscopy based on print circuit board[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7564-7573. |
2 | Silva R E, Gouriveau R, Jemei S, et al. Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11128-11144. |
3 | Yuan H, Dai H, Wei X, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: No. 228376. |
4 | Chen H C, Xu S C, Pei P C, et al. Mechanism analysis of starvation in PEMFC based on external characteristics[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5437-5446. |
5 | Zhong D, Lin R, Jiang Z, et al. Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations[J]. Applied Energy, 2020, 264: No. 114626. |
6 | Lin R, Che L, Shen D, et al. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis[J]. Electrochimica Acta, 2020, 330: No. 135251. |
7 | 王哲,谢怡,臧鹏飞,等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43. |
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 36-43. | |
8 | Lin R H, Xi X N, Wang P N, et al. Review on hydrogen fuel cell condition monitoring and prediction methods[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5488-5498. |
9 | Keller R, Ding S X, Müller M, et al. Fault-tolerant model predictive control of a direct methanol-fuel cell system with actuator faults[J]. Control Engineering Practice, 2017, 66: 99-115. |
10 | Tang W, Lin R, Weng Y, et al. The effects of operating temperature on current density distribution and impedance spectroscopy by segmented fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10985-10991. |
11 | Gouriveau R, Hilairet M, Hissel D, et al. IEEE PHM 2014 data challenge[EB/OL]. [2022-03-02]. |
12 | Pukrushpan J T. Modeling and Control of fuel cell systems and fuel processors[D]. Ann Arbor, Michigan:University of Michigan, 2003. |
13 | Zhang X, Pisu P. Prognostic-oriented fuel cell catalyst aging modeling and its application to health-monitoring and prognostics of a PEM fuel cell[J]. International Journal of Prognostics and Health Management, 2020, 5(1): 2153-2648. |
14 | Hu Zun-yan, Xu Liang-fei, Li Jian-qiu, et al. A reconstructed fuel cell life-prediction model for a fuel cell hybrid city bus[J]. Energy Conversion and Management, 2018, 156: 723-732. |
15 | Lu L G, Ouyang M G, Huang H Y, et al. A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles[J]. Journal of Power Sources, 2007, 164(1): 306-314. |
16 | Jouin M, Gouriveau R, Hissel D, et al. Degradations analysis and aging modeling for health assessment and prognostics of PEMFC[J]. Reliability Engineering & System Safety, 2016, 148: 78-95. |
17 | Javed K, Gouriveau R, Zerhouni N, et al. Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[J]. Journal Power Sources, 2016, 324: 745-757. |
18 | Silva R E, Gouriveau R, Jemei S, et al. Proton exchange membrane fuel cell degradation prediction based on adaptive Neuro-Fuzzy inference systems[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11128-11144. |
19 | Morando S, Jemei S, Hissel D, et al. Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network[J].International Journal of Hydrogen Energy, 2017, 42(2): 1472-1480. |
20 | Wu Y M, Breaz E, Gao F, et al. Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[J]. IEEE Trans Energy Convers, 2016, 31(4): 1570-1582. |
21 | Ma R, Yang T, Breaz E, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231: 102-115. |
22 | Pan R, Yang D, Wang Y J, et al. Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30994-31008. |
23 | Liu H, Chen J, Hou M, et al. Data-based short-term prognostics for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(32): 20791-20808. |
24 | Zhou D, Gao F, Breaz E, et al. Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach[J]. Energy, 2017, 138: 1175-1186. |
25 | Zuo B, Cheng J S, Zhang Z H. Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and Savitzky-Golay filter[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15928-15937. |
26 | Dong S J, Luo T H. Bearing degradation process prediction based on the PCA and optimized LS-SVM model[J]. Measurement: Journal of the International Measurement Confederation, 2013, 46(9): 3143-3152. |
27 | Chen J, Jing H, Chang Y, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382. |
28 | Mao L, Jackson L, Davies B. Effectiveness of a novel sensor selection algorithm in PEM fuel cell on-line diagnosis[J]. IEEE Transactions on Industrial Electronics (1982), 2018, 65(9): 7301-7310. |
29 | Pei P C, Chen D F, Wu Z Y, et al. Nonlinear methods for evaluating and online predicting the lifetime of fuel cells[J]. Applied Energy, 2019, 254: No. 113730. |
30 | Revankar S T, Majumdar P. Fuel cells: Principles, Design, and Analysis[M]. Boca Raton:CRC Press, 2014. |
31 | Huang S Y, Ganesan P, Jung H, et al. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications[J]. Journal of Power Sources, 2012, 198: 23-29. |
32 | Xing L, Hossain M A, Tian M, et al. Platinum electro-dissolution in acidic media upon potential cycling[J]. Electrocatalysis-US, 2014, 5(1): 96-112. |
33 | Zhang S S, Yuan X Z, Hin J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 194(2): 588-600. |
34 | Ma R, Yang T, Breaz E, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231: 102-115. |
35 | Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of Power Sources, 2004, 131(1/2): 41-48. |
36 | Yuan Xiao-zi, Li Hui, Zhang Sheng-sheng, et al. A review of polymer electrolyte membrane fuel cell durability test protocols[J]. Journal of Power Sources, 2011, 196(22): 9107-9116. |
37 | Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
38 | van den Bergh F, Engelbrecht A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. |
39 | 张慧斌, 王鸿斌, 胡志军. PSO 算法全局收敛性分析[J]. 计算机工程与应用, 2011, 47(34): 61-63. |
Zhang Hui-bin, Wang Hong-bin, Hu Zhi-jun. Analysis of particle swarm optimization algorithm global convergence method[J]. Computer Engineering and Applications, 2011, 47(34): 61-63. | |
40 | Kingma D P, Ba L J. Adam: a method for stochastic optimization[C]∥International Conference on Learning Representations,San Diego,California,USA 2015: No.13. |
[1] | Ji-zong LIU,Xiao-ping WU,Wei-hua KONG. Parameter configuration of fuel cell hybrid system for tram based on fish swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2004-2013. |
[2] | Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146. |
[3] | Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981. |
[4] | Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043. |
[5] | Jing DU,Hong-hui ZHAO,Yu-peng WANG,Tian-wei DING,Kai WEI,Kai WANG,Ling-hai HAN. Purge strategy optimization and verification of PEM fuel cell engine based on AMESim simulation model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2069-2076. |
[6] | Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095. |
[7] | Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129. |
[8] | Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155. |
[9] | Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174. |
[10] | Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003. |
[11] | Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167. |
[12] | Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995. |
[13] | Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033. |
[14] | Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970. |
[15] | Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024. |
|