Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2213-2224.doi: 10.13229/j.cnki.jdxbgxb20210227

   

Deadbeat predictive voltage compensation control for permanent magnet synchronous hub motors of electric vehicles

Xiao-dong SUN(),Yao ZHANG,Long CHEN   

  1. Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,China
  • Received:2021-03-22 Online:2022-10-01 Published:2022-11-11

Abstract:

The traditional deadbeat predictive current control is dependent on mathematical model. The parameter mismatch caused by temperature change will increase the current response error and current pulsation. To solve these problems, a deadbeat predictive voltage compensation control (DPVCC) strategy based on composite sliding mode disturbance observer (CSMDO) was proposed. The observer can estimate the future current value and the lumped perturbation of the system simultaneously and compensate them into the voltage vector to improve the robustness. The MATLAB/Simulink simulation and experimental results based on a 30 kW permanent magnet synchronous hub motor show that DPVCC can reduce the current error more than 60%, which can restrain current pulsation, improve the accuracy and robustness of the control system.

Key words: vehicle engineering, permanent magnet synchronous hub motor, deadbeat predictive control, sliding mode disturbance observer, voltage compensation, robust control

CLC Number: 

  • TM341

Fig.1

Block diagram of conventional DPCC"

Table 1

Main parameters of permanent magnet synchronous hub motor"

参 数符 号数 值
极对数pn22
定子电阻/ΩRs0.8
d?轴电感/mHLs4.5
q?轴电感/mHLs4.5
永磁体磁链/Wbψf0.215
转动惯量/(kg·m2J0.03
额定转速/(r·min-1N360
额定功率/kWPN30

Fig.2

Current error under inductance and resistance parameter mismatches(parameter mismatch range 50%)"

Fig.3

Current error under inductance and permanent magnet flux linkage mismatches(parameter mismatch range 50%)"

Fig.4

Block diagram of deadbeat predictive voltage compensation control based on composite sliding modedisturbance observer"

Fig.5

Experimental platform of PMSHM system"

Fig.6

Simulation results of the two control strategies under different parameter mismatches"

Fig.7

Experimental results of two control strategies under different parameter mismatches"

Fig.8

Experimental results under parametermismatches (0.1Ls +0.1ψf )"

1 张厚升,李震梅,边敦新,等. 电动汽车用三相开绕组永磁同步电机的控制及容错运行[J]. 吉林大学学报: 工学版, 2020, 50(3): 784-795.
Zhang Hou-sheng, Li Zhen-mei, Bian Dun-xin, et al. Control and fault⁃tolerant operation of TPOW⁃PMSM[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 784-795.
2 崔弘,刘国斌,王海彪,等. 混合电动汽车制动能量回收策略研究[J].吉林大学学报: 信息科学版, 2017, 35(1): 49-56.
Cui Hong, Liu Guo-bin, Wang Hai-biao, et al. Research on regenerative braking energy recovery of hybrid electric vehicle[J]. Journal of Jilin University (Information Science Edition), 2017, 35(1): 49-56.
3 曾小华,纪人桓,宋大凤,等. 无变速器电动汽车加速曲线拟合法[J]. 吉林大学学报: 工学版, 2020, 50(3): 804-811.
Zeng Xiao-hua, Ji Ren-huan, Song Da-feng, et al. Acceleration curve fitting method for electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 804-811.
4 Shi Z, Sun X D, Lei G, et al. Analysis and optimization of radial force of permanent magnet synchronous hub motors[J]. IEEE Transactions on Magnetics, 2020, 56(2): No. 7508804.
5 Shi Z, Sun X D, Cai Y F, et al. Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on taguchi method[J]. IEEE Transactions on Energy Conversion, 2020, 35(4): 2036-2044.
6 赵健,邓志辉,朱冰,等. 面向电子机械助力制动的永磁同步电机位置伺服控制[J].吉林大学学报:工学版, 2020, 50(3): 834-841.
Zhao Jian, Deng Zhi-hui, Zhu Bing, et al. Position servo control of permanent magnet synchronous motor for electro⁃mechanical brake booster[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 834-841.
7 张帅, 秦利燕, 杨列宸. 不同工况电动汽车轮毂电机磁场温度场分析[J]. 汽车实用技术, 2018, 42(19): 1-4.
Zhang Shuai, Qin Li-yan, Yang Lie-chen. Temperature field analysis of hub motor of electric vehicle under different working conditions[J]. Automobile Applied Technology, 2018, 42(19): 1-4.
8 王伟华,穆嘉毅,符容,等. 混合动力汽车凸极式永磁同步电机电流解耦控制[J]. 吉林大学学报: 工学版, 2017, 47(3): 693-700.
Wang Wei-hua, Mu Jia-yi, Fu Rong, et al. Current decouple control of salient-pole permanent magnet synchronous motor for hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 693-700.
9 王军年,张煦,康丹,等. 轮毂电机驱动太阳能赛车参数匹配及巡航控制[J]. 吉林大学学报: 工学版, 2015, 45(3): 689-695.
Wang Jun-nian, Zhang Xu, Kang Dan, et al. Parameter matching and cruising control of a solar race car with in-wheel motor[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3): 689-695.
10 李刚,宗长富,陈国迎,等. 线控四轮独立驱动轮毂电机电动车集成控制[J].吉林大学学报:工学版, 2012, 42(4): 796-802.
Li Gang, Zong Chang-fu, Chen Guo-ying, et al. Integrated control for X-by-wire electric vehicle with 4 independently driven in-wheel motors[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(4): 796-802.
11 Jiang W D, Wang P X, Ni Y Y, et al. Multimode current hysteresis control for brushless DC motor in motor and generator state with commutation torque ripple reduction[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 2975-2985.
12 Choi H H, Yun H M, Kim Y. Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 540-547.
13 张虎,张建伟,郭孔辉,等. 基于扰动观测器的电动助力转向系统用永磁同步电机鲁棒预测电流控制[J]. 吉林大学学报: 工学版, 2015, 45(3): 711-718.
Zhang Hu, Zhang Jian-wei, Guo Kong-hui, et al. Robust prediction current control of permanent magnet synchronous motor for EPS based disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3): 711-718.
14 Siami M, Khaburi D A, Rivera M, et al. An experimental evaluation of predictive current control and predictive torque control for a PMSM fed by a matrix converter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8459-8471.
15 张博,张建伟,郭孔辉,等. 路感模拟用永磁同步电机电流控制[J].吉林大学学报: 工学版, 2019, 49(5): 1405-1413.
Zhang Bo, Zhang Jian-wei, Guo Kong-hui, et al. Current control of permanent magnet synchronous motor for road feeling simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1405-1413.
16 Rovere L, Formentini A, Gaeta A, et al. Sensorless finite-control set model predictive control for IPMSM drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5921-5931.
17 Luo Y X, Liu C H. Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase PMSM motor[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6960-6972.
18 Zhang X G, He Y K. Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7838-7851.
19 Hang J, Zhang J B, Xia M J, et al. Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6405-6418.
20 Zhang X G, Zhang L, Zhang Y C. Model predictive current control for PMSM drives with parameter robustness improvement[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1645-1657.
21 Sun X D, Wu M K, Lei G, et al. An improved model predictive current control for PMSM drives based on current track circle[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3782-3793.
22 Yao Y, Huang Y K, Peng F, et al. An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10145-10155.
23 Yuan X, Zhang C N, Zhang S. A novel deadbeat predictive current control scheme for OEW-PMSM drives[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 11990-12000.
24 Kang S, Soh J, Kim R. Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 159-168.
25 Lin X G, Huang W X, Jiang W, et al. Deadbeat direct torque and flux control for permanent magnet synchronous motor based on stator flux oriented[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5078-5092.
26 薛诚, 宋文胜, 武雪松, 等. 无差拍优化五相永磁同步电机有限集模型预测转矩控制算法[J]. 中国电机工程学报, 2017, 37(23): 7014-7023, 7093.
Xue Cheng, Song Wen-sheng, Wu Xue-song, et al. Finite-control-set model predictive torque control algorithm with deadbeat optimization for five-phase permanent-magnet synchronous machines drives[J]. Proceedings of the CSEE, 2017, 37(23): 7014-7023, 7093.
27 Akrem M A, Pragasen P. Novel flux linkage estimation algorithm for a variable flux PMSM[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2319-2335.
28 高文, 肖海峰, 马昭, 等. 永磁同步电机预测模型参数误差分析研究[J]. 自动化与仪表, 2020, 35(9): 80-83, 104.
Gao Wen, Xiao Hai-feng, Ma Zhao, et al. Parameter error analysis of the prediction control model of permanent magnet synchronous motor[J]. Automation and Instrumentation, 2020, 35(9): 80-83, 104.
29 Pei G J, Liu J X, Gao X N, et al. Deadbeat predictive current control for SPMSM at low switching frequency with moving horizon estimator[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 345-353.
30 Jiang Y J, Xu W, Mu C X, et al. Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 251-263.
31 Zhang X G, Hou B S, Mei Y. Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3818-3834.
[1] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[2] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[3] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[4] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[5] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[6] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[7] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[8] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[9] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[10] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[11] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[12] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[13] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[14] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[15] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!