Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2265-2277.doi: 10.13229/j.cnki.jdxbgxb20210256

Previous Articles    

Configuration analysis of hydro⁃mechanical composite transmission devices

Zhen ZHU1,2,3(),Deng-feng WANG1,Xiao-dong SUN1,3(),Ling-xin ZENG3,Ying-feng CAI3,Long CHEN3   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Power System of Tractor,Luoyang 471000,China
    3.Automobile Engineering Research;Institute,Jiangsu University,Zhenjiang 212013,China
  • Received:2021-04-01 Online:2022-10-01 Published:2022-11-11
  • Contact: Xiao-dong SUN E-mail:zhuzhenjs@126.com;xdsun@ujs.edu.cn

Abstract:

According to the advantages and disadvantages of hydrostatic transmission mode and mechanical transmission mode, and the characteristics of power split mechanism and power confluence mechanism, the configuration analysis was carried out, and 5 typical hydro-mechanical composite transmission schemes was put forward. The structures of each transmission scheme were introduced according to mechanism kinematics, and the characteristics of different working modes were analyzed by combined with speed regulation characteristic curves of each transmission. Taking a typical transmission device as the research object, the simulation model based on Simulation X was built, the engaging sequence of clutches was set up, the speed changing curves of hydraulic system, confluence mechanism and output shaft in different gears were analyzed. The results show that, the actual speed regulation curves of variable speed transmission device are consistent with the theoretical speed regulation curves basically, a good continuous speed regulation function in a large range is realized, and the related research results of hydro-mechanical composite transmission can provide theoretical reference for the practical engineering application.

Key words: vehicle engineering, hydro-mechanical composite transmission, high efficiency stepless speed regulation, transmission schemes, speed regulation characteristics, Simulation X

CLC Number: 

  • U463.2

Fig.1

Structure principle of hydro-mechanical composite transmission devices"

Fig.2

Structure principle diagram of scheme 1"

Table 1

Switching elements state of scheme 1"

传动模式档 位切换元件
SBC1C2C3C4
液压传动F(H)

前进挡

机液传动(功率分流)FA(HM)
机液传动(功率汇流)FB(HM)
机械传动F(M)
液压传动R(H)后退档

Fig.3

Speed regulation characteristic curves of scheme 1"

Fig.4

Structure principle diagram of scheme 2"

Table 2

Switching elements state of scheme 2"

传动模式挡位切换元件
B1B2B3B4B5B6C1C2C3C4C5C6C7F1F2F3
液压传动F(H)
R(H)

机液传动

(功率分流)

FA1(HM)
FA2(HM)
FA3(HM)
FA4(HM)

机液传动

(功率汇流)

FB1(HM)
FB2(HM)
FB3(HM)
FB4(HM)
机械传动F1(M)
F2(M)
F3(M)
F4(M)
R(M)

Fig.5

Structure principle diagram of scheme 3"

Table 3

Switching elements state of scheme 3"

传动模式挡位切换元件
BC0C1C2C3C4C5C6C7C8C9C10
液压传动F(H)
R(H)
机液传动F1(HM)
F2(HM)
F3(HM)
F4(HM)
R1(HM)
R2(HM)
机械传动F1(M)
F2(M)
F3(M)
F4(M)
R1(M)
R2(M)

Fig.6

Speed regulation characteristic curves of scheme 3"

Fig.7

Structure principle diagram of scheme 4"

Table 4

Switching elements state of scheme 4"

传动模式挡位切换元件
B1B2C0C1C2C3C4C5C6C7
单流传动H
G
V
双流传动GV
HG
HV

能量管理

系统

传动系统制动能量回收
动力输出系统能量回收
能量管理系统驱动传动系统
能量管理系统驱动动力输出系统

Fig.8

Speed regulation characteristic curves of scheme 4"

Fig.9

Structure principle diagram of scheme 5"

Table 5

Switching elements state of scheme 5"

传动模式挡位切换元件
S1S2C1C2C3C4C5C6C7C8

机液传动

(正向)

F3N(HM)
F3P(HM)
F2N(HM)
F2P(HM)
F1N(HM)
F1P(HM)
液压传动F(H)
R(H)

机液传动

(负向)

R1P(HM)
R1N(HM)

Fig.10

Speed regulation characteristic curves of scheme 5"

Fig.11

Simulation model of scheme 5"

Fig.12

Comparative curves of theoretical calculation and simulation model"

Fig.13

Speed changing curves simulation results of scheme 5"

1 Xia Y, Sun D Y, Qin D T, et al. Study on the design method of a new hydromechanical continuously variable transmission system[J]. IEEE Access, 2020,8: 195411-195424.
2 Bao Y, Zhong Z M, Yang S J. Modeling of power transition in full power shift of hydro-mechanical transmission[J]. Mathematical Problems in Engineering, 2020, 2020(3): 1-14.
3 罗俊林, 吴维, 苑士华, 等. 液压机械无级变速器速比自抗扰控制研究[J]. 汽车工程, 2021, 43(3): 374-380, 404.
Luo Jun-lin, Wu Wei, Yuan Shi-hua, et al. Study on active disturbance rejection control for speed ratio of hydro-mechanical continuously variable transmission[J]. Automotive Engineering, 2021, 43(3): 374-380, 404
4 夏光, 夏岩, 唐希雯, 等. 采用滑转率-阻力区间划分法的拖拉机双流传动系统调速控制[J].农业工程学报, 2021, 37(3): 47-55.
Xia Guang, Xia Yan, Tang Xi-wen, et al. Speed regulation control of the dual-flow transmission system for a tractorusing slip rate-resistance interval division[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 47-55.
5 曹付义, 李豪迪, 席志强, 等. 液压机械复合传动系统模式切换过程同步控制[J]. 西安交通大学学报, 2019, 53(8): 56-67, 75.
Cao Fu-yi, Li Hao-di, Xi Zhi-qiang, et al. Synchronous control of mode switching process for hydro-mechanical compound transmission system [J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 56-67, 75.
6 杨树军, 张曼, 曾盼文, 等. 液压机械无级传动全功率换段过程排量比调节模型[J]. 农业工程学报, 2019, 35(13): 64-73.
Yang Shu-jun, Zhang Man, Zeng Pan-wen, et al. Model of regulating displacement ratio in full power shifting process of hydro-mechanical variable transmission[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 64-73.
7 Ahn S, Choi J, Son H,et al. Development of a new sub-shift schedule and control algorithm for a hydro-mechanical transmission[J]. Advances in Mechanical Engineering, 2016, 8(12):1-14.
8 Yu J, Cao Z, Cheng M, et al. Hydro-mechanical power split transmissions: Progress evolution and future trends[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2019,233(3): 727-739.
9 Macora Alarico, Benatob Alberto, Rossettic Antonio, et al. Study and simulation of a hydraulic hybrid powertrain[J]. Energy Procedia, 2017, 126: 1131–1138.
10 Rossetti Antonio, Macor Alarico. Multi-objective optimization of hydro-mechanial power split transmissions[J]. Mechnism and Machine Theory, 2013, 62: 112-128.
11 Liu Fang-xu, Wu Wei, Hu Ji-bin, et al. Design of multi-range hydro-mechanical transmission using modular method[J]. Mechanical Systems and Signal Processing, 2019, 126: 1-20.
12 Yu Xia, Sun Dong-ye, Qin Da-tong, et al. Optimisation of the power-cycle hydro-mechanical parameters in a continuously variable transmission designed for agricultural tractors[J]. Biosystems Engineering, 2020, 193: 12-24.
13 闫丽娟,孙辉,刘伟,等. 行走工程机械液压混合动力技术[J].吉林大学学报:工学版, 2014, 44(2): 364-368.
Yan Li-juan, Sun Hui, Liu Wei, et al. Hydraulic hybrid technology of moving construction machinery [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2): 364-368.
14 唐新星,赵丁选,黄海东,等. 工程车辆等比三段式液压机械的复合传动[J].吉林大学学报:工学版, 2006, 36 (): 56-61.
Tang Xin-xing, Zhao Ding-xuan, Huang Hai-dong, et al. Three-stage with geometric ratios hydraulic-mechanical compound transmission for construction vehicle [J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(): 56-61.
15 王浩然,曹付义,马可,等. 拖拉机多模式机液复合传动装置设计[J]. 机械传动, 2020, 44(3): 66-71.
Wang Hao-ran, Cao Fu-yi, Ma Ke, et al. Design of multi-mode hydraulic mechanical composite transmission device for tractor [J]. Journal of Mechanical Transmission, 2020, 44(3): 66-71.
16 黄国勤,罗莎祁,胡博,等. 风电系统的混合式液压机械无级变速技术[J]. 华南理工大学学报: 自然科学版,2019,47(1): 95-102.
Huang Guo-qin, Luo Sha-qi, Hu Bo, et al. Hybrid hydro-mechanical continuously variable transmission technology for wind power system[J]. Journal of South China University of Technology(Natural Science Edition), 2019,47 (1): 95-102.
17 张明柱, 王全胜, 白东洋, 等. 基于拖拉机整机效率最大化的液压机械无级变速规律[J].农业工程学报, 2016, 32(21): 74-78.
Zhang Ming-zhu, Wang Quan-sheng, Bai Dong-yang, et al. Speed changing law of hydro-mechanical CVT based on maximum efficiency of tractors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (21): 74-78.
18 朱镇,蔡英凤,陈龙,等.一种混合动力多模式切换的无级变速传动系统[P].中国:201910041132.1,2019-01-16.
19 朱镇,蔡英凤,陈龙,等.一种机械液压复合传动装置及控制方法[P].中国:201911076475.8,2019-11-06.
20 朱镇,蔡英凤,陈龙,等.一种带双离合变速的液压机械传动装置及其控制方法[P].中国:202010101329.2,2020-02-19.
21 朱镇,蔡英凤,陈龙,等.一种集齿轮-液压-金属带为一体的多模式机液复合传动装置[P].中国:202010066884.6,2020-01-20.
22 朱镇,高翔,夏长高,等.单行星排汇流液压机械无级变速箱[P].中国:201410282040.X,2014-06-23.
23 朱镇,高翔,夏长高,等.单行星排汇流液压机械无级变速箱的离合器液压控制系统[P].中国:201410298022.0,2014-06-27.
24 朱镇. 液压机械无级变速器性能优化研究[D]. 镇江: 江苏大学汽车与交通工程学院, 2016.
Zhu Zhen. Optimization Research on the performance of hydro-mechanical continuously variable transmission [D]. Zhenjiang: School of Automotive and Traffic Engineering, Jiangsu University, 2016.
25 Zhu Zhen, Chen Long, Xia Chang-gao, et al. Test research on the adhesive and tractive performance of a wheeled tractor[J]. International Journal of Heavy Vehicle Systems, 2020, 27(1/2): 65-82.
[1] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[2] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[3] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[4] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[5] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[6] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[7] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[8] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[9] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[10] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[11] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[12] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[13] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[14] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[15] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!