Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (1): 72-81.doi: 10.13229/j.cnki.jdxbgxb20210610

Previous Articles     Next Articles

Thermal key point select and error prediction under typical speed of machine tool spindle

Shi-jie GUO1,2(),Xue-wei ZHANG1,2,3(),Nan ZHANG1,2,Guan QIAO1,2,Shu-feng TANG1,2   

  1. 1.College of Mechanical Engineering,Inner Mongolia University of Technology,Hohhot 010051,China
    2.Inner Mongolia Key Laboratory of Special Service Intelligent Robotics,Inner Mongolia Autonomous Region,Hohhot 010051,China
    3.School of Mechanical Engineering,Zhejiang University,Hangzhou 310063,China
  • Received:2021-06-20 Online:2023-01-01 Published:2023-07-23
  • Contact: Xue-wei ZHANG E-mail:sjguo@imut.edu.cn;zxw@imut.edu.cn

Abstract:

Aiming at the key problem of the influence of thermal error on the static accuracy of machine tool spindle, a thermal error prediction model based on modified chicken swarm optimization algorithm (MCSO) and support vector machine (SVM) is proposed. Spectral clustering based on unsupervised learning and Spearman correlation analysis are used to identify the key sensitive temperature measuring points of the spindle, so as to reduce the number dependence of temperature data distribution and weaken the multicollinearity among temperature variables. Levy flight strategy is adopted in the local search of hens, and a nonlinear dynamic adaptive inertia weight for updating chick strategy is constructed to realize the global optimization of kernel function, and then MCSO is used to optimize the kernel function, penalty factor and deviation of SVM. MCSO-SVM, BP-GA, GA-SVM and CSO-SVM are used to establish thermal error models respectively. Meanwhile, the prediction ability of models under different working conditions is compared and analyzed. The experimental results of thermal error show that spectral clustering and Spearman correlation analysis can effectively reduce the coupling effect caused by collinearity of temperature variables; MCSO-SVM can achieve high-precision prediction of spindle thermal errors under typical speed, and the model has good generalization ability and robustness.

Key words: machine tool, thermal error, spectral clustering, modified chicken colony algorithm, support vector machine

CLC Number: 

  • TH161

Fig.1

Algorithm flow of MCSO-SVM"

Fig.2

Schematic diagram of five point measurement and test site"

Fig.3

Temperature distribution and spindle thermal imaging"

Fig.4

Standard speed chart of spindle thermal effect test"

Fig.5

Spindle temperature measurement curve"

Fig.6

Spindle thermal displacement curve"

Table 1

Extraction and grouping of key measurement points"

测点聚类组相关系数测点聚类组相关系数
T110.9356T620.9519
T240.9875T730.9547
T340.9399T820.9717
T440.8453T940.9356
T550.9450T1020.8865

Fig.7

Thermal error prediction of standard speed of spindle"

Table 2

Comparison of goodness of fit of thermal error"

模型参数指标
|ei |min|ei |max|ei |RMSER2η
BP?GAEx7.72390.25843.054653.73290.949787.81
θx0.01330.00170.00770.00850.839082.59
θy0.01260.00270.00670.00730.951989.26
CSO?SVMEx5.86550.61511.8446582.15170.979392.97
θx0.01060.00170.005410.00610.913089.35
θy0.01320.00150.0051420.00600.969293.17
MCSO?SVMEx0.48982.95881.18781.30160.990794.33
θx0.00010.00750.00380.00430.967091.64
θy0.00020.00450.002570.00270.993294.91
GA?SVMEx1.52787.74454.03264.34260.893881.05
θx0.00040.01320.00530.00630.931090.27
θy0.00110.01210.00560.00620.965492.11

Fig.8

Error prediction of random speed of spindle"

1 Tan Feng, Yin Guo-fu, Zheng Kai, et al. Thermal error prediction of machine tool spindle using segment fusion LSSVM[J]. The International Journal of Advanced Manufacturing Technology, 2021,116(1/2):1-16.
2 李国龙,陶小会,徐凯,等. 数控机床转台位置相关几何误差的快速测量与辨识[J]. 吉林大学学报:工学版, 2021, 51(2): 458-467.
Li Guo-long, Tao Xiao-hui, Xu Kai, et al. Rapid measurement and identification of position dependent geometric errors of CNC machine tool turntable[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 458-467.
3 Li Tie-jun, Sun Ting-ying, Zhang Yi-min, et al. Prediction of thermal error for feed system of machine tools based on random radial basis function neural network[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(5):1545-1553.
4 杜柳青,李仁杰,余永维. 基于注意力机制的时空卷积数控机床热误差模型研究[J]. 农业机械学报, 2021, 52(5):404-411.
Du Liu-qing, Li Ren-jie, Yu Yong-wei. Spatiotemporal convolution thermal error model of CNC machine tools based on attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2021, 52(5):404-411.
5 刘阔,韩伟,王永青,等. 数控机床进给轴热误差补偿技术研究综述[J]. 机械工程学报, 2021, 57(3):156-173.
Liu Kuo, Han Wei, Wang Yong-qing,et al. Review on thermal error compensation for feed axes of CNC machine tools[J]. Journal of Mechanical Engineering, 2021, 57(3):156-173.
6 Li Yang, Shi He-xuan, Ji Shi-jun, et al. Thermal positioning error modeling of servo axis based on empirical modeling method[J]. Micromachines, 2021, 12(2):1-22.
7 Fu Guo-qiang, Tao Chun, Xie Yun-peng, et al. Temperature-sensitive point selection for thermal error modeling of machine tool spindle by considering heat source regions[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9/10):2447⁃2460 .
8 杜宏洋,陶涛,侯瑞生,等. 机床主轴轴向热误差一阶自回归建模方法[J].哈尔滨工业大学报,2021, 53(7):60-67.
Du Hong-yang, Tao Tao, Hou Rui-sheng, et al. First-order autoregressive modeling method for axial thermal error of machine tool spindle[J]. Journal of Harbin Institute of Technology, 2021, 53(7):60-67.
9 赵亮,雷默涵,朱星星,等.高精度数控机床主轴系统热误差的控制方法[J].上海交通大学学报, 2020, 54(11):1165-1171.
Zhao Liang, Lei Mo-han, Zhu Xing-xing, et al. A new thermal error control method for spindle system of high precision computer numerical control machine tools[J]. Journal of Shanghai Jiaotong University, 2020, 54(11):1165-1171.
10 谭峰,李成南,萧红,等.基于LSTM循环神经网络的数控机床热误差预测方法[J].仪器仪表学报,2020,41(9):79-87.
Tan Feng, Li Cheng-nan, Xiao Hong, et al. A thermal error prediction method for CNC machine tool based on LSTM recurrent neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(9):79-87.
11 Huang Z, Liu Y, Du L, et al. Thermal error analysis, modeling and compensation of five-axis machine tools[J]. Journal of Mechanical Science and Technology, 2020, 34(10):4295-4305.
12 Yue Hai-tao, Guo Chen-guang, Li Qiang, et al. Thermal error modeling of CNC milling machine tool spindle system in load machining: based on optimal specific cutting energy[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(9):4561-4568
13 黄智,刘永超,邓涛,等. 一种五轴数控机床热误差建模方法[J]. 中国机械工程,2020,31(13):1529-1538.
Huang Zhi, Liu Yong-chao, Deng Tao, et al. A method for thermal error modeling of FAMT[J]. China Mechanical Engineering, 2020, 31(13):1529-1538.
14 Shi Hu, Jiang Chun-ping, Yan Zong-zhuo, et al. Bayesian neural network-based thermal error modeling of feed drive system of CNC machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9): 3031-3044.
15 马驰,杨军,梅雪松,等.基于遗传算法及BP网络的主轴热误差建模[J].计算机集成制造系统,2015,21(10):2627-2636.
Ma Chi, Yang Jun, Mei Xue-song, et al. High-speed spindle thermal error modeling based on genetic algorithm and BP neural network[J]. Computer Integrated Manufacturing Systems, 2015, 21(10):2627-2636.
16 张蕾.基于GA-SVM的数控机床热误差建模研究[D]. 桂林:桂林电子科技大学材料科学与工程学院,2015.
Zhang Lei. Research on thermal error modeling of NC machine tools based on GA-SVM[D]. Guilin: School of Materials Science and Engineering, Guilin University of Electronic Technology,2015.
17 马驰,赵亮,梅雪松,等. 基于粒子群算法与BP网络的机床主轴热误差建模[J]. 上海交通大学学报,2016, 50(5):686-695.
Ma Chi, Zhao Liang, Mei Xue-song, et al. Thermal error modeling of machine tool spindle based on particle swarm optimization and neural network[J]. Journal of Shanghai Jiaotong University,2016, 50(5):686-695.
18 Meng X, Liu Y, Gao X, et al. A new bio-inspired algorithm: chicken swarm optimization[C]∥International Conference in Swarm Intelligence, Hefei,China,2014: 86-94.
19 Deb Sanchari, Gao Xiao-zhi, Tammi Kari, et al. Recent studies on chicken swarm optimization algorithm: a review (2014⁃2018)[J]. Artificial Intelligence Review, 2020, 53(4): 1737⁃1765.
20 罗勇,邵珠峰,王立平,等. NL201HA数控卧式车床X轴热误差建模及补偿[J]. 清华大学学报:自然科学版,2021,61(1):28-35.
Luo Yong, Shao Zhu-feng, Wang Li-ping, et al. X-axis thermal error modeling and compensation for an NL201HA CNC horizontal lathe[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1):28-35.
21 Ma Chi, Liu Jia-lan, Wang Shi-long. Thermal error compensation of linear axis with fixed-fixed installation[J]. International Journal of Mechanical Sciences,2020,175:No.105531.
22 Groos Lisa, Held Christian, Keller Frank, et al. Mapping and compensation of geometric errors of a machine tool at different constant ambient temperatures[J]. Precision Engineering,2020, 63:10-17.
23 Yao Xiao-dong, Du Zheng-chun, Ge Guang-yan, et al. Dynamic temperature gradient and unfalsified control approach for machine tool thermal error compensation[J]. Journal of Mechanical Science and Technology, 2020,34(2):319-331.
24 Liu Yun-sheng, Miao En-ming, Liu Hui, et al. Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology[J]. The International Journal of Advanced Manufacturing Technology,2020,106(1):655⁃669.
25 . Test code for machine tools-3: determination of thermal effects [S].
26 Yang J, Shi H, Feng B, et al. Thermal error modeling and compensation for a high-speed motorized spindle[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5-8):1005-1017.
[1] En-shen LONG,Guang-ze BAN. Idle noise diagnosis algorithm of air-conditioning refrigeration compressor based on wavelet packet extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1929-1934.
[2] Ye TIAN,Nan-nan LI,Jun-wei LIU,Sheng-yuan JIANG,Chu WANG,Wei-wei ZHANG. Identification of critical fragments cutting load of simulated lunar soil based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2143-2151.
[3] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Su-e CAO. Fast outlier mining algorithm in uncertain data set based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1181-1186.
[4] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[5] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[6] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427.
[7] Zi-ling ZHANG,Xiong HU,Yin QI,Wei WANG,Zhi-qiang TAO,Zhi-feng LIU. An approach for error allocation of machine tool based on vector projection response surface method [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 384-391.
[8] Gui-xiang SHEN,Jun ZHENG,Ying-zhi ZHANG,Jie SONG,Zhe-wen LI. Risk analysis of machining center failure mode based on multi⁃attribute group decision making [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 338-344.
[9] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[10] Li-juan YU,Ang LIU,Zhao-jun YANG,Hai-long TIAN,Chuan-hai CHEN,Jing-wen GAO. Reliability analysis of numerical control machine tools based on analytic network process and date enevalopment analys [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 400-408.
[11] Ren-yan JIANG,Bin-bin XIONG. Modelling degradation processes of machine tools using an equivalent processing time model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 483-490.
[12] Chuan-hai CHEN,Cheng-gong WANG,Zhao-jun YANG,Zhi-feng LIU,Hai-long TIAN. Research status and development trend analysis of reliability modeling of CNC machine tools [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 253-266.
[13] Chun-ping HOU,Chun-yue ZHAO,Zhi-peng WANG,Hai-rui TIAN. Video anomaly detection algorithm based on effective anomaly sample construction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1823-1829.
[14] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[15] Kang WANG,Meng YAO,Li-ben LI,Jian-qiao LI,Xiang-jin DENG,Meng ZOU,Long XUE. Mechanical performance identification for lunar soil in lunar surface sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1146-1152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!