Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2474-2482.doi: 10.13229/j.cnki.jdxbgxb.20211193

Previous Articles     Next Articles

Analysis of drawbar pull to CE⁃4 Lunar rover based on rutting image of wheel

Zhen-yu HU1,2(),Yan SHEN2,3,Wei-jun WANG1,2,Xiao-tao LUO1,2,Meng ZOU2,3()   

  1. 1.Shanghai Aerospace System Engineering Institute,Shanghai 201109,China
    2.Joint Lab for Planetary Terramechanics and Bionics Engineering,Shanghai 201109,China
    3.Key Laboratory of Bionics Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2021-11-14 Online:2023-09-01 Published:2023-10-09
  • Contact: Meng ZOU E-mail:13917151873@139.com;zoumeng@jlu.edu.cn

Abstract:

In order to assess the lunar surface trafficability of YuTu-2 lunar rover, a kind of method of lunar rover drawbar pull evaluation based on slip ration information was proposed. The wheel of the Yutu-2 lunar rover and its ground prototype were used as the test objects, the YuTu-2's lunar drive was simulated by the whole vehicle test and soil trough test. With the input parameters of rutting information, slip rate and wheel load, the calibration models of sinkage-slip rate and rut spacing-slip rate were established, the slip rate was identified by Matlab image processing. The results showed that the slip rate of the YuTu-2 lunar rover traveled in the specified area of the lunar surface at locations D', A', and B', respectively is 10.45%, 12.96%, and 19.70%, and the drawbar pull is 177.03 N, 181.62 N, and 194.47 N.The ground test and inversion calculation results reveal that YuTu-2 travels well in the aforementioned region and satisfies the design requirements.

Key words: terramechanics, lunar rover, lunar soil, slip ratio, rutting

CLC Number: 

  • TU411

Fig.1

Wheel of lunar rover"

Fig.2

Simplified wheel-soil interaction model"

Fig.3

Interaction model of the spiked rigid wheel with soil"

Fig.4

Test process of rut image inversion"

Table 1

SNJ-2 lunar soil mechanical parameter values"

类型kc/(kN·m-(n+1)kφ /(kN·m-(n+2)nc/kPaφ/(°)K/cm
SNJ-2148201.00.2730.91.95
月壤0~2.88201.00~5.913~551.78

Fig.5

RUAG soil trough test system"

Fig.6

Vehicle traction test"

Fig.7

Schematic diagram of the overall position of YuTu-2 visual load"

Fig.8

Location of the navigation camera of YuTu-2"

Table 2

Attitude parameters of YuTu-2 rover and navigation camera"

序号输入条件成像目标支持中心规划结果北京中心规划结果
1巡视器处于D'点,姿态:

导航相机对休眠区域环拍

云台俯仰-28°,桅杆偏航从-170°到-10°,间隔-20°云台俯仰-29°,桅杆偏航从-170°到-10°,间隔-20°
偏航146.863°,
俯仰-1.1°,
滚动-0.35°
2巡视器处于A点,姿态:导航相机对A'点云台俯仰-32°,桅杆偏航从-100°到20°、间隔20°云台俯仰-32°,桅杆偏航从-100°到20°、间隔20°
偏航-90.348°,
俯仰2.749°,
滚动-1.048°
3巡视器处于B'点,姿态:导航相机对C云台俯仰-28°,桅杆偏航从-170°到-10°,间隔20°云台俯仰-29°,桅杆偏航从-170°到-10°,间隔20°
偏航4.0543°,
俯仰4.8095°,
滚动-2.866°

Fig.9

Sinkage of different slip"

Fig.10

Rutting images of different slip rates"

Fig.11

Features of rut spacing"

Fig.12

Rutting spacing of different slip rates"

Fig.13

Vehicle simulation test"

Fig.14

Perspective transformation-point A"

Fig.15

Test site collection"

1 Cherkasov I I, Shvarev V V. Soviet investigations of the mechanics of lunar soils[J]. Soil Mechanics and Foundation Engineering, 1973, 10(4): 252-256.
2 Leonovich A K, Gromon V V, Rybakov A V, et al. Studies for lunar ground mechanical properties with the self-propelled lunokhod-l[R]. Moscow: Peredvizhnaya Laboratoriya na Luna-Lunokhod-1, 1971: 120-135.
3 Leonovich A K, Gromov V V, Rybakov A V, et al. Investigations of the mechanical properties of the lunar soil along the path of Lunokhod-1[R]. Berlin: COSPAR space research Ⅻ, 1972: 53-54.
4 Zacny K, Wilson J, Craft J, et al. Robotic Lunar Geotechnical Tool[M]. Honolulu: Earth and Space, 2010.
5 韩鸿硕, 陈杰. 21世纪国外深空探测发展计划及进展[J]. 航天器工程, 2008, 17(3): 1-22.
Han Hong-shuo, Chen Jie. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3): 1-22.
6 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
Cui Ping-yuan, Xu Rui, Zhu Sheng-ying, et al. State of the art and developement trends of on-board autonomy technology for deep space explore[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28.
7 解杨敏, 季力, 魏祥泉, 等. 国内外行星表面巡视器自主导航技术研究[J]. 上海航天, 2021, 38(1): 61-71.
Xie Yang-min, Ji Li, Wei Xiang-quan, et al. Domestic and overseas research status on autonomous navigation technology of planetary rovers[J]. Aerospace Shanghai, 2021, 38(1): 61-71.
8 Team R. Characterization of the martian surface deposits by the Mars pathfinder rover, sojourner[J]. Science, 1997, 278(5344): 1765-1768.
9 Moore H J, Bickler D B, Crisp J A, et al. Soil-like deposits observed by Sojourner, the pathfinder rover[J]. Journal of Geophysical Research Planets, 1999, 104(E4): 8729-8746.
10 Sullivan R, Anderson R, Biesiadecki J, et al. Cohesions, friction angles, and other physical properties of martian regolith from mars exploration rover wheel trenches and wheel scuffs[J/OL]. [2021-11-02].
11 Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical properties experiments conducted by Spirit at Gusev crater[J]. Science, 2004, 305(5685): 821-824.
12 Arvidson R E, Bonitz R G, Robinson M L, et al. Results from the mars phoenix lander robotic arm experiment[J/OL]. [2021-11-03].
13 Ono M, Fuchs T J, Steffy A, et al. Risk-aware planetary rover operation: autonomous terrain classification and path planning[C]∥2015 IEEE Aerospace Conference, Monoana, USA, 2015: 1-10.
14 Huang G. Visual-inertial navigation: a concise review[C]∥2019 International Conference on Robotics and Automation (ICRA), Monertal, Canada, 2019: 9572-9582.
15 Iagnemma K, Kang S, Brooks C, et al. Multi-sensor terrain estimation for planetary rovers[C]∥Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, NARA, Japan, 2003: No.12273618.
16 Reina G, Ojeda L, Milella A, et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 185-195.
17 Cross M, Ellery A, Qadi A. Estimating terrain parameters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics, 2013, 50(3): 165-174.
18 崔平远, 刘冰, 居鹤华. 月壤力学参数在线估计算法研究[J]. 计算机测量与控制, 2008, 16(2): 245-269.
Cui Ping-yuan, Liu Bing, Ju He-hua. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurement&Control, 2008, 16(2): 245-269.
19 李萌, 高峰, 孙鹏, 等. 月壤力学参数反求及试验验证[J]. 北京航空航天大学学报, 2011, 37(9): 1081-1805.
Li Meng, Gao Feng, Sun Peng, et al. Mechanical parameters reverse estimation of lunar soil and experimental verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1081-1805.
20 薛龙, 邹猛, 李建桥, 等. 基于轮地作用参数和PLSDA方法的月壤力学性能评估[J]. 航空学报, 2015, 36(11): 3751-3758.
Xue Long, Zou Meng, Li Jian-qiao, et al. Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3751-3758.
21 Ding L, Gao H, Deng Z, et al. Slip ratio for lugged wheel of planetary rover in deformable soil: definition and estimation[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, ST.Louis, USA, 2009: 3343-3348.
22 丁亮, 高海波, 邓宗全, 等. 基于应力分布的月球车轮地相互作用地面力学模型[J]. 机械工程学报, 2009, 45(7): 49-55.
Ding Liang, Gao Hai-bo, Deng Zong-quan, et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution[J]. Journal of Mechanical Engineering, 2009, 45(7): 49-55.
23 李楠, 丁亮, 高海波, 等. 基于视觉检测技术的星球探测车车轮滑转率检测方法[C]∥第三十二届中国控制会议, 西安, 2013: 3673-3679.
24 李楠, 高海波, 吕凤天, 等. 车辙图像频域分析及星球车车轮滑转率估计方法[J]. 宇航学报, 2016, 37(11): 1356-1364.
LI Nan, Gao Hai-bo, Lv Feng-tian, et al. Wheel trace imprint image frequency domain analysis and rover wheel slip ratio estimation[J]. Journal of Astronautics, 2016, 37(11): 1356-1364.
25 黄晗, 许述财, 张金换, 等. 基于轮辙非接触测量的月壤非参数化识别方法[J]. 吉林大学学报:工学版, 2019, 49(2): 366-374.
Huang Han, Xu Shu-cai, Zhang Jin-huan, et al. Non-parametric identification method for lunar regolith based on rut non-contact measurement[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 366-374.
26 黄晗, 李建桥, 陈百超, 等. 基于地面力学的筛网轮牵引通过性研究[J]. 农业机械学报, 2016, 47(): 464-470.
Huang Han, Li Jian-qiao, Chen Bai-chao, et al. Traction trafficability of wire mesh wheel based on terramechanics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.1): 464-470.
27 陈百超, 邹猛, 党兆龙, 等. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报: 工学版, 2019, 49(6): 1836-1843.
Chen Bai-chao, Zou Meng, Dang Zhao-long, et al. Experiment on preasure-sinkage for mesh wheels of CE-3 lunar rover on lunar regolith[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
28 李建桥, 黄晗, 党兆龙, 等. 轻载荷条件下的筛网轮沉陷[J]. 吉林大学学报: 工学版, 2015, 45(1):167-173.
Li Jian-qiao, Huang Han, Dang Zhao-long, et al. Sinkage of wire mesh wheel under light load[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(1):167-173.
29 黄晗. 深空探测车辆筛网轮牵引通过性研究[D]. 长春: 吉林大学生物与农业工程学院, 2017.
Huang Han. Study on traction trafficability for wire mesh wheel of planetary exploration rovers[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2017.
30 Bekker M G. Theory of Land Locomotion[M]. Ann Arbor: University of Michigan Press, 1956.
[1] Ye TIAN,Nan-nan LI,Jun-wei LIU,Sheng-yuan JIANG,Chu WANG,Wei-wei ZHANG. Identification of critical fragments cutting load of simulated lunar soil based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2143-2151.
[2] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[3] Quan-ping XIA,Jiang-ping GAO,Hao-yuan LUO,Qi-gong ZHANG,Zhi-jie LI,Fei YANG. Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 541-549.
[4] Long XUE,Meng YAO,Li-ben LI,Yin-wu LI,Xiang-jin DENG,Jian-qiao LI,Meng ZOU. Experimental analysis of mechanical properties of surface lunar soil based on lunar indentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 497-503.
[5] Kang WANG,Meng YAO,Li-ben LI,Jian-qiao LI,Xiang-jin DENG,Meng ZOU,Long XUE. Mechanical performance identification for lunar soil in lunar surface sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1146-1152.
[6] Guo-ying CHEN,Jun YAO,Peng WANG,Qi-kun XIA. Stability control strategy for rear in⁃wheel motor drive vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 397-405.
[7] Bai-chao CHEN,Meng ZOU,Zhao-long DANG,Han HUANG,Yang JIA,Rui-yang SHI,Jian-qiao LI. Experiment on pressure⁃sinkage for mesh wheels of CE⁃3lunar rover on lunar regolith [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
[8] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[9] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system [J]. 吉林大学学报(工学版), 2018, 48(2): 364-372.
[10] JIN Li-qiang, SUN Zhi-xiang, ZHENG Ying. Coordinated anti-lock braking control of compound regenerative braking system in electric-wheel vehicle [J]. 吉林大学学报(工学版), 2017, 47(5): 1344-1351.
[11] ZHAO De-ming, JIANG Sheng-yuan, TANG De-wei, HOU Xu-yan, DENG Zong-quan. Structure design of lunar subsurface sampling drill [J]. 吉林大学学报(工学版), 2017, 47(4): 1149-1158.
[12] CUI Jin-sheng, HOU Xu-yan, DENG Zong-quan, PAN Wan-jing, JIANG Sheng-yuan. Measurement system and experiment study of the effective thermal conductivity of granular system in a vacuum [J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[13] YANG Fei, DENG Zong-quan, TAO Jian-guo, LIU Ji-cheng. Rational wheel number for lunar rover [J]. , 2012, 42(05): 1113-1119.
[14] WANG Guo-fu, GAO Feng, XU Guo-yan. Kinematic analysis and control of omnidirectional hexapod robot with a steering-wheel [J]. , 2012, 42(04): 1008-1014.
[15] WANG Xiao-lan, WANG Rong-ben. Analysis of lunar rover vibration characteristics based on rigid-flexible coupled model [J]. 吉林大学学报(工学版), 2012, 42(02): 279-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[4] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[5] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[6] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[7] Tang Xin-xing,Zhao Ding-xuan,Huang Hai-dong,Ai Xue-zhong,Feng Shi-zhu . Modified stereo vision calibration method for construction robot
[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .
[8] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[10] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .