Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3351-3357.doi: 10.13229/j.cnki.jdxbgxb.20221035

Previous Articles    

Active flutter suppression method for aluminum alloy thin⁃walled parts milling

You-qiang WANG(),Meng-jie LI,Tao ZHAO,Yu-ling ZHU,Yan HE   

  1. School of Mechanical & Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China
  • Received:2022-08-16 Online:2023-12-01 Published:2024-01-12

Abstract:

Due to its poor rigidity, aluminum alloy thin-walled parts are easily affected by the spindle speed, axial cutting depth, feed speed and radial cutting depth, resulting in chatter in the milling process. In order to solve this problem, an active flutter suppression method for milling aluminum alloy thin-walled parts was designed. The milling dynamics model based on cylindrical spiral end milling cutter was established, the cutting force changes in x and y directions were analyzed, and the mechanical trajectories of cutter teeth during cutting were calculated. The wavelet neural network proportional integral derivative control algorithm was used to realize the active suppression of the chatter in milling parts. The experimental results show that the method can achieve stable milling under high tool speed and axial cutting depth, and the cutting force after inhibition is very consistent with the optimal cutting force, and the vibration range after inhibition is controlled between -5 μm and 5 μm, which can reduce the deformation and damage in the processing, thereby improving the production efficiency and product life.

Key words: machining, aluminum alloy, thin-wall parts, milling processing, active flutter suppression, operational mechanical trajectory

CLC Number: 

  • TH161

Table 1

Cutting state analysis"

试验序号轴向切深/mm转速/(r·min-1切削状态
10.25800稳定
20.26000稳定
30.26200稳定
40.26400稳定
50.26600稳定
60.26800稳定
70.37000稳定
80.37200稳定
90.37400稳定
100.37600稳定
110.37800稳定
120.38000稳定

Fig.1

Analysis of x-axis and y-axis milling force after suppression"

Fig.2

Analysis of vibration change"

Fig.3

Amplitude analysis"

1 任宇强, 李国剑, 白浩. 大型薄壁硬质铝合金零件加工技术研究[J]. 工具技术, 2020, 54(4): 58-60.
Ren Yu-qiang, Li Guo-jian, Bai Hao. Research on machining techniques for large thin-walled components made of hard aluminum alloys[J]. Tool Engineering, 2020, 54(4): 58-60.
2 罗恒, 王优强, 张平. 基于单因素法对7A09铝合金铣削表面质量的研究[J]. 表面技术, 2020, 49(3): 327-333.
Luo Heng, Wang You-qiang, Zhang Ping. Study on surface quality of 7A09 aluminum alloy milling based on single factor method[J]. Surface Technology, 2020, 49(3): 327-333.
3 沈浩, 王全, 岳顺龙. 基于二次回归模型的铝合金弱刚性零件辅助支撑加工铣削温度预测[J]. 工具技术, 2022, 56(2): 30-34.
Shen Hao, Wang Quan, Yue Shun-long. Prediction of milling temperature for auxiliary support machining of aluminum alloy weakly rigid parts based on quadratic regression model[J]. Tool Engineering, 2022, 56(2): 30-34.
4 李茂月, 刘硕, 田帅, 等. 薄壁件铣削加工颤振的图像特征提取与识别[J]. 吉林大学学报: 工学版, 2022, 52(2): 425-432.
Li Mao-yue, Liu Shuo, Tian Shuai, et al. Image feature extraction and recognition of milling chatter of thin walled parts[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 425-432.
5 聂雪媛, 郑冠男, 杨国伟. 变时滞间隙非线性机翼颤振主动控制方法[J]. 北京航空航天大学学报, 2020, 46(10): 1899-1906.
Nie Xue-yuan, Zheng Guan-nan, Yang Guo-wei. Flutter active control method of time-varying delayed aerofoil with free-play nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1899-1906.
6 沐旭升, 邹奇彤, 黄锐, 等. 体自由度颤振主动抑制的多输入/多输出自抗扰控制律设计[J]. 振动工程学报, 2020, 33(5): 910-920.
Mu Xu-sheng, Zou Qi-tong, Huang Rui, et al. Design of multiple-input/multiple-output active disturbance rejection controller for body-freedom flutter suppression[J]. Journal of Vibration Engineering, 2020, 33(5): 910-920.
7 鲁治锴, 俞建超, 丁宇星. 加工参数对6061铝合金铣削振动的影响[J]. 工具技术, 2021, 55(9): 30-35.
Lu Zhi-kai, Yu Jian-chao, Ding Yu-xing. Influence of milling parameters on milling vibration of 6061 aluminum alloy[J]. Tool Engineering, 2021, 55(9): 30-35.
8 谭宇硕, 张文斌, 薛力峰, 等. 精铣削中抑制柔性工件颤振的阻尼器设计[J]. 液压与气动, 2022, 46(1): 124-129.
Tan Yu-shuo, Zhang Wen-bin, Xue Li-feng, et al. Design of damper for chatter suppression of flexible workpiece in fine milling[J]. Chinese Hydraulics & Pneumatics, 2022, 46(1): 124-129.
9 曹宏瑞, 李登辉, 刘金鑫, 等. 智能主轴高速铣削颤振的模糊控制方法研究[J]. 机械工程学报, 2021, 57(13): 55-62.
Cao Hong-rui, Li Deng-hui, Liu Jin-xin, et al. Research on fuzzy control for high speed milling chatter of intelligent spindle[J]. Journal of Mechanical Engineering, 2021, 57(13): 55-62.
10 米洁, 穆希望, 杨庆东, 等. 铣削加工颤振稳定域影响参数研究及优化[J].机床与液压,2020,48(10):154-159.
Mi Jie, Mu Xi-wang, Yang Qing-dong, et al. Research and optimization of influence parameters of chatter stability domain in milling process[J]. Machine Tool & Hydraulics, 2020, 48(10): 154-159.
11 赵国龙, 信连甲, 李亮, 等. 高硅铝合金的金刚石涂层刀具铣削损伤机理研究[J]. 中国机械工程, 2022, 33(2): 153-159.
Zhao Guo-long, Xin Lian-jia, Li Liang, et al. Study on damage mechanism of high-volume fraction silicon aluminum alloy milled with diamond coated cutting tools[J]. China Mechanical Engineering, 2022, 33(2): 153-159.
12 陈云, 侯亮, 刘文志, 等. 基于时域仿真法的断续铣削颤振预测[J]. 机械工程学报, 2021, 57(3): 98-106.
Chen Yun, Hou Liang, Liu Wen-zhi, et al. Chatter stability prediction in low immersion milling based on time-domain simulation[J]. Journal of Mechanical Engineering, 2021, 57(3): 98-106.
13 籍永建, 王西彬, 刘志兵, 等. 包含刀具-工件多重交互与速度效应的铣削颤振稳定性分析[J].振动与冲击, 2021, 40(17): 14-24, 54.
Ji Yong-jian, Wang Xi-bin, Liu Zhi-bing, et al. Stability analysis of milling chatter with tool-workpiece multiple interactions and velocity effects[J]. Journal of Vibration and Shock, 2021, 40(17): 14-24, 54.
14 沈宇峰. 基于ABAQUS铝合金铣削过程中毛刺形成机制的研究[J]. 轻合金加工技术, 2021, 49(9): 57-61.
Shen Yu-feng. Study on mechanism of burr formation in milling process of aluminum alloy based on ABAQUS[J]. Light Alloy Fabrication Technology, 2021, 49(9): 57-61.
15 尚歌, 王雁飞. 生态型机械加工过程设备叠加振动检测仿真[J]. 计算机仿真, 2021, 38(11): 197-200, 393.
Shang Ge, Wang Yan-fei. Simulation of overlay vibration detection of equipment in ecotype machining process[J]. Computer Simulation, 2021, 38(11): 197-200, 393.
[1] Xin CHEN,Guan-chen ZHANG,Kang-ming ZHAO,Jia-ning WANG,Li-fei YANG,De-rong SITU. Influence of lap welds on the lightweight design of welded aluminum structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1282-1288.
[2] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[3] Yu-bin ZHENG,Jie SONG,Jin-tong LIU,Li-ming MU,Zhe-hui CHEN,Jun ZHENG. Complex system module classification based on Copula numerical interpretative structural modeling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1281-1291.
[4] Ren-yan JIANG,Bin-bin XIONG. Modelling degradation processes of machine tools using an equivalent processing time model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 483-490.
[5] Ying-zhi ZHANG,Sheng-dong HOU,Zhi-qiong WANG,Ren-hao DONG,Sheng YANG. Fault analysis of machining center based on gray theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 433-438.
[6] Zi-ling ZHANG,Xiong HU,Yin QI,Wei WANG,Zhi-qiang TAO,Zhi-feng LIU. An approach for error allocation of machine tool based on vector projection response surface method [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 384-391.
[7] Hai-ji YANG,Jia-long HE,Guo-fa LI,Li-ding WANG,Si-yuan WANG. Application of improved failure mode and effect analysis method in risk analysis of spindle system of machining center [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 345-352.
[8] Lei WANG,Bing-han HUANG,Jia-hui CONG,Li HUI,Song ZHOU,Yong-zhen XU. Effect of ultrasonic impact on fatigue performance of friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2542-2548.
[9] Gui-xiang SHEN,Lan LUAN,Ying-zhi ZHANG,Li-ming MU,Shu-bin LIANG. Fault propagation impact assessment of machining center components [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 63-69.
[10] Wei-min ZHUANG,Peng-yue WANG,Rui-juan GAO,Dong-xuan XIE. Effect of hot forming on static mechanical properties of AA5754 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 847-854.
[11] Kai-yu LUO,Jun-cheng CHEN,Chang-yu WANG,Jin-zhong LU. Effect of spot diameteron corrosion resistance of aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 501-510.
[12] Ji-cai LIANG,Yan-fei LIAO,Fei TENG,Ce LIANG,Yi LI. Rectangular section profile thinning rate of three-dimensional multi-point stretch bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 163-171.
[13] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[14] Yi-lun LIU,Qing WANG,Chi LIU,Song-bai LI,Jun HE,Xian-qiong ZHAO. Effect of creep and artificial aging on fatigue crack growth performance of 2524 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1636-1643.
[15] Wu⁃jiao XU,Cheng⁃shang LIU,Xin⁃yao LU. Simulation and prediction of surface roughness of 6061 aluminum alloy workpiece after shot peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1280-1287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!