Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 564-573.doi: 10.13229/j.cnki.jdxbgxb.20220449

Previous Articles    

Design and experiment of silage baling and wrapping machine with electric driving

Bin FENG1(),Tao ZHANG1,2(),Tao LIANG2,Ying ZHANG2,Xing-long TANG2,Guan-ping WANG1   

  1. 1.College of Electromechanical Engineering,Gansu Agricultural University,Lanzhou 730070,China
    2.Chongqing Academy of Agricultural Sciences,Chongqing 401329,China
  • Received:2022-05-19 Online:2024-02-01 Published:2024-03-29
  • Contact: Tao ZHANG E-mail:gsfengbin@163.com;fendou8423030@163.com

Abstract:

Aiming at the problems of silage baling and film wrapping link separation, large supporting power, an silage baling and wrapping film machine with electric drive was designed. By analyzing the working principle of the machine and the operation process of the core components, the main parameters such as the power of feeding and baling device, the linear speed of conveyor belt, the opening angle of the baling chamber, and the time required for 2~3 layers of film wrapping were determined, the reliability simulation of the frame at full load and the performance test of the whole machine were carried out. The results show that the frame maximum stress was 116.4 MPa and the maximum deformation was 0.71 mm under full load condition, which meet the mechanical properties of the material. The bundling rate was 97.8%, the regular bundling rate was up to 100%, the bale density was 148.2~162.5 kg/m3, and the straw bale resistance rate was 84.0%. The whole machine runs smoothly and reliably with small vibration, the low straw bale resistance rate may be caused by the straw being too uniform and short, and the twine was not complete, which can be optimized in the later crushing treatment and twine mechanism.

Key words: agricultural machinery, silage, kinking institutions, baling wrap film, finite element, experiment

CLC Number: 

  • S817.1

Fig.1

Sketch map of silage baling and wrapping machine with electric driving"

Table 1

Main technical parameters of silage baling and wrapping machine with electric driving"

参数设计值
长×宽×高/(mm×mm×mm)2450×1500×1400
配套动力/kW电动机 5.5
整机质量/kg600
成捆尺寸/mmφ580×500
成捆质量/kg30~80
挂接方式牵引式
作业效率/(包·h-140~60

Fig.2

Transmission system diagram of silage baling and wrapping machine with electric driving"

Fig.3

Diagram of feeding process"

Fig.4

Schematic diagram of baling device"

Fig.5

Working principle of baling chamber"

Fig.6

Structure diagram of herringbone aluminum alloy circular roller"

Fig.7

Schematic diagram of kinking institutions"

Fig.8

Schematic diagram of composition and movement process of unloading mechanism"

Fig.9

Schematic diagram of composition and movement process of wrapping device"

Fig.10

Schematic diagram of rack structure and installation position of each device"

Table 2

Load type and apply form while the rack be fully loaded"

载荷数值/N形式
总和7270/
控制器120集中载荷
裹膜装置+青饲圆捆+电动机Ⅰ2000集中载荷
电动机Ⅱ600集中载荷
传动装置500集中载荷
打捆装置+青饲圆捆2600集中载荷
液压油泵150集中载荷
机架质量1300惯性载荷

Fig.11

Distribution diagram of equivalent stress and deformation of rack in full load condition"

Fig.12

Prototype performance test"

Table 3

Result of bundles and unzerbrechlich tests"

成捆试验参数数值抗摔试验参数数值
打捆数/捆89摔捆数/捆25
散捆数/捆2摔散捆数/捆4
成捆率/%97.8抗摔率/%84.0
标准值/%≥98标准值/%≥90

Table 4

Result of bundles size measure"

序号直径×长度/ (mm×mm)序号直径×长度/ (mm×mm)
1572×46511568×493
2583×49412542×474
3566×49213605×491
4585×50214579×486
5574×47815572×465
6611×49316562×483
7541×47517553×477
8577×48518611×492
9576×48619578×479
10598×49920564×486

Table 5

Test result of bale density"

序号体积/m3质量/kg密度/(kg·m-3平均值/(kg·m3标准值/(kg·m3
10.5179.8156.5154.1≥115
20.4973.2149.4
30.5894.3162.5
40.5483.0153.7
50.5682.9148.2

Table 6

Test result of wrapping time"

序号2层时间/s3层时间/s
112.517.8
213.118.5
313.919.2
412.418.9
515.220.3
613.518.6
714.419.9
平均值13.619.0
理论值11.417.1
1 梁荣庆,钟波,蒙贺伟,等. 4QJ-3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报:工学版, 2021, 51(5): 1887-1896.
Liang Rong-qing, Zhong Bo, Meng He-wei, et al.Development of 4QJ-3 type picking and cutting platform for silage oat[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1887-1896.
2 Toruk F, Gonulol E. Effects of particle length on alfalfa baled silage quality and color under different storage conditions[J]. Bulgarian Journal of Agricultural Science, 2011, 17(4): 451-455.
3 杨牧. 农作物秸秆、黑麦草与豆科牧草混合青贮发酵品质的研究[D]. 南京: 南京农业大学草业学院, 2015.
Yang Mu. Effect of ensiling straw and grass in different proportion with legumes on fermentation quality[D]. Nanjing: College of Agro-Grassland Science, Nanjing Agricultural University, 2015.
4 巴隆业. 方草捆捡拾压捆机压捆室设计及有限元分析[D]. 呼和浩特: 内蒙古农业大学机电工程学院, 2013.
Ba Long-ye. Square hay baler design and baling room finite element analysis based on ANSYS[D]. Huhehaote: College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, 2013.
5 Toruk F, Gonulol E. Effects of particle length on alfalfa baled silage quality and color under different storage conditions[J]. Bulgarian Journal of Agricultural Science, 2011, 17(4): 451-455.
6 白彦福. 甘肃饲用甜高粱青贮发酵品质、瘤胃降解特性及加工工艺[D]. 兰州: 兰州大学草地农业科技学院, 2017.
Bai Yan-fu. Fermentation quality, rumen degradation characteristics and processing technology of sweet sorghum silage in gansu province[D]. Lanzhou: College of Pastoral Agriculture Science and Technology, Lanzhou University, 2017.
7 Savoie P, Tremblay D, Trembleay G F, et al. Effecr of length of cut on quality of stack silage and milk production[J]. Canadian Journal of Animal Science, 1992, 72(2): 253-263.
8 包攀攀,吕江南,王加跃,等. 青贮饲料收获机械的发展现状与对策[J]. 粮食与饲料工业, 2018(1): 42-45.
Bao Pan-pan, Lv Jiang-nan, Wang Jia-yue, et al. Research progress and suggestions on harvesting machine for silage fodder[J]. Cereal & Feed Industry, 2018(1): 42-45.
9 梁荣庆,张翠英,任冬梅,等. 玉米青贮收获机械的应用及发展趋势[J]. 农业装备与车辆工程, 2016, 54(2): 17-21.
Liang Rong-qing, Zhang Cui-ying, Dong-mei Reng, et al. Application and development trend of corn silage harvest machinery[J]. Agricultural Equipment & Vehicle Engineering, 2016, 54(2): 17-21.
10 闵令强,张军强,梁荣庆,等. 青贮饲料收获贮存模式及机械设备概述[J]. 中国农机化学报, 2018, 39(8): 62-66, 75.
Min Ling-qiang, Zhang Jun-qiang, Liang Rong-qing, et al. Overview of harvesting and storage modes of silage and related mechanical equipment[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(8): 62-66, 75.
11 陈美舟,徐广飞,宋志才,等.全株青贮玉米径向局部压缩特性试验[J]. 吉林大学学报:工学版, 2021, 51(1): 1-9.
Chen Mei-zhou, Xu Guang-fei, Song Zhi-cai, et al. Experimental study of radial partial compression characteristics of whole silage corn[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-9.
12 王国富. 青贮稻杆圆捆打捆机的设计与试验研究[D]. 哈尔滨: 东北农业大学工程学院, 2019.
Wang Guo-fu. Design and experimental study of round baler for silage rice straw[D]. Harbin: College of Engineering, Northeast Agricultural University, 2019.
13 西北工业大学机械原理及机械零件教研室. 机械设计[M]. 北京: 高等教育出版社, 2006.
14 王伟,格根图,刘兴波,等. 压缩密度对天然牧草青贮养分含量的影响[J]. 草原与草业, 2018, 30(3): 43-49.
Wang Wei, Ge Gen-tu, Liu Xing-bo, et al. Effect of compressing density on nutritional quality of natural grass silage[J]. Grassland and Prataculture, 2018, 30(3): 43-49.
15 北京起重运输机械研究所. DTⅡ(A)型带式输送机设计手册[M]. 北京: 冶金工业出版社, 2003.
16 . 圆草捆打捆机 [S].
17 . 玉米饲草青贮技术规程 [S].
18 战长江. 自走式秸秆收获打捆机的研制[J]. 新疆农机化, 2013(4): 9-10.
Zhan Chang-jiang. Development of self-propelled straw harvest baling machine[J]. Xinjiang Agricultural Mechanization, 2013(4): 9-10.
19 肖章,刘亮东,王光辉,等. 基于PLC的青贮圆草捆打捆机控制系统设计[J]. 中国农业大学学报, 2013, 18(6): 175-179.
Xiao Zhang, Liu Liang-dong, Wang Guang-hui, et al. Control system design of silage round baler based on PLC[J]. Journal of China Agricultural University, 2013, 18(6): 175-179.
20 张泽璞,段宝成,陶桂香,等. 打捆试验台设计与试验[J]. 农机化研究, 2019, 41(9): 152-156.
Zhang Ze-pu, Duan Bao-cheng, Tao Gui-xiang, et al. Design and test of bale rig[J]. Journal of Agricultural Mechanization Research, 2019, 41(9): 152-156.
21 李耀明,成铖,徐立章. 4L-4.0型稻麦联合收获打捆复式作业机设计与试验[J]. 农业工程学报, 2016, 32(23): 29-35.
Li Yao-ming, Cheng Cheng, Xu Li-zhang. Design and experiment of baler for 4L-4.0 combine harvester of rice and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 29-35.
[1] Wei SUN,Jun YANG. Finite element modeling and vibration reduction analysis of cylindrical shell structures with equal⁃angle attachment of piezoelectric shunt patches [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 365-374.
[2] Xiao HAN,Xian-zhang LING,Shuang TIAN,Sheng-yi CONG. Analysis and control of mud spillover in high⁃speed railway ballast⁃track subgrade caused by grouting [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 506-515.
[3] Zhi-jun YANG,Chi ZHANG,Guan-xin HUANG. Mechanical model of rigid⁃flexible coupling positioning stage based on floating coordinate method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 385-393.
[4] Rui-jie SHI,Fei DAI,Wu-yun ZHAO,Fa-rong YANG,Feng-wei ZHANG,Yi-ming ZHAO,Hao QU,Tian-fu WANG,Jun-hai GUO. Design and experiments of self⁃propelled quinoa combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2686-2694.
[5] Shu-pei ZHANG,Ming-yue XIA,Wei ZHANG,Zhao CHEN,Yi-xiang CHEN. Impact dynamic modeling and simulation for ball joint with clearance considering nonlinear stiffness [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2227-2235.
[6] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[7] Jue LI,An-shun ZHANG,Jun-hui ZHANG,Jun-feng QIAN. Model testing and numerical analysis of dynamic response of graded crushed rock base structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1782-1789.
[8] Si-lin CAO,Jian-hua XIE,Yu-xin YANG,Yong-rui LIU,Yong-tao LU,Bo SUN. Design and experiment of side row cotton straw returning and residual film recovery combined machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1514-1528.
[9] Jiu-yi LI,Feng-jun ZHOU,Jian-hua LIU,Yun-hou SUN,Jing-zhong ZHU,Ming-kun QIU. Modified IWAN model of helical threaded connector imposed to torsional load [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1305-1314.
[10] Yong ZHANG,Feng-zhao MAO,Shui-chang LIU,Qing-yu WANG,Shen-gong PAN,Guang-sheng ZENG. Optimization on distortion grid of vehicle external flow field based on Laplacian Algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1289-1296.
[11] Xue-jun ZHANG,Shuang HUANG,Zeng-lu SHI,Yong-liang YU,Xin-cheng ZHOU,Wei JIN,Yong CHEN,Jia HONG. Design and test of the remaining film picking and baling machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1220-1230.
[12] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[13] Ce LIANG,Fu-lei HUANG,Ji-cai LIANG,Yi LI. Numerical simulation on deformation of protective beam with “日”-shaped section during rotary draw bending [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3397-3403.
[14] Ming-gen ZENG,Yu WU,Qing-tian SU. Experimental studies on cracking behavior of steel fiber reinforced concrete slab in negative moment region of orthotropic composite bridge deck [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3176-3185.
[15] Guo-qiang DUN,Wen-hui LIU,Xing-peng WU,Ning MAO,Wen-yi JI,Hong-yan MA. Simulation optimization and experiment of screw extrusion precision fertilizer ejector [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 3026-3037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!