Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1368-1376.doi: 10.13229/j.cnki.jdxbgxb.20230002

Previous Articles    

Experiment on interfacial bonding performance between CFRP and clay brick under sulfate attack of wetting-drying cycles

Wen-qiang JIN1,2(),Jia-yuan HU1,Qi WANG3,Chao-peng LI1,Yong-hui YU1,Jia-wei ZHANG1,2   

  1. 1.School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control,Lanzhou Jiaotong University,Lanzhou 730070,China
    3.China Railway Design Corporation,Tianjin 300308,China
  • Received:2023-01-04 Online:2024-05-01 Published:2024-06-11

Abstract:

A double-sided shear test was carried out on the sintered clay brick block bonded with carbon fiber reinforced composite material (CFRP) to investigate the failure morphology and bonding properties of the CFRP-clay brick block interface under different sulfate dry-wet cycles, and the sulfate corrosion was discussed. Under the degradation mechanism of CFRP-clay brick interface bond performance, a bond strength degradation model is proposed. The results show that the failure morphology of the CFRP-clay brick block interface is greatly affected by the sulfate dry-wet cycle; the interface bonding properties (ultimate load-bearing capacity, peak shear stress) first slightly increase with the cycle time and then decrease rapidly. On this basis, according to the existing interface theory, a CFRP-clay brick block interface bond-slip model affected by the cycle time is proposed. The predicted value of the model is compared and analyzed with the experimental data. The model can accurately express the impact the law of degradation of interfacial bonding properties caused by sulphate dry-wet cycles.

Key words: sulfate, carbon fibre reinforced plastics, clay brick, interface, bonding-slip relationship

CLC Number: 

  • TB332

Table 1

Main performance parameters of CFRP"

纤维抗拉强度/MPa弹性模量/GPa延伸率/%厚度/mm
CFRP35002201.4580.111

Table 2

Main performance parameters of the resin"

树脂拉伸剪切强度/MPa拉伸强度/GPa压缩强度/MPa弯曲强度/MPa正拉粘结强度/MPa弹性模量/MPa伸长率/%
浸渍胶24.2940.1273.6272.954.442 605.72.45

Fig.1

CFRP-clay brick block specimen production"

Fig.2

Strain gauge sticking specimen and schematic diagram"

Fig.3

CFRP-clay brick block test data acquisition system and loading device"

Fig.4

Schematic diagram of loading device"

Fig.5

CFRP-brick interface failure modes"

Table 3

Average value of ultimate bearing capacity of block and compressive strength of clay brick under different times of sulfate dry-wet cycle"

序号循环次数/次砌体破坏荷载平均值/kN破坏荷载下降比例/%黏土砖抗压强度平均值/MPa抗压强度下降比例/%
1029.130.0016.540.00
22031.457.9917.676.83
34034.0516.9219.1115.53
46028.84-0.9816.42-0.73
58026.96-7.4215.54-6.05

Fig.6

Time-varying curve of compressive strength of block and interface failure load"

Fig.7

Typical strain curve of CFRP-clay brick block"

Fig.8

Bonding-slip curves of clay bricks under different sulfate drying and wetting cycles"

Fig.9

Relationship between the interface characteristic values and the sulfate dry-wet cycles"

Table 4

Interface ductility parameters under different sulfate cycle times"

循环次数/次抗压强度平均值/MPa延性参数计算
016.546.683
2017.676.652
4019.116.600
6017.426.660
8015.546.706

Fig.10

Comparison of predicted and experimental values"

1 叶列平,冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-34.
Ye Lie-ping, Feng Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006, 39(3): 24-34.
2 李春良, 程永春. 碳纤维布加固钢筋混凝土梁的预应力控制过程[J]. 吉林大学学报: 工学版, 2018, 38(2): 393-398.
Li Chun-liang, Cheng Yong-chun. Pre-tension control of reinforced concrete beam strengthened with CFRP sheets[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 38(2): 393-398.
3 Mosallam A, Banerjee S. Enhancement inInplane shear capacity of unreinforced masonry (URM)walls strengthenedwith fiber reinforced polymer composites[J]. Composites Part B-Engineering, 2011, 42(6): 1657-1670.
4 郑文忠,万夫雄,李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报: 工学版, 2010, 40(5): 1244-1249.
Zheng Wen-zhong, Wan Fu-xiong, Li Shi-guang. Mechanical performance of reinforced concrete slabs strengthened with CFRP sheets bonded with an inorganic adhesive after fire[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(5): 1244-1249.
5 郑怡, 李莉, 刘明, 等. FRP与砌体界面的粘结承载力[J]. 沈阳建筑大学学报,2010,26(1): 27-30.
Zheng Yi, Li Li, Liu Ming, et al. Study on anchorage strength models for FRP attached to masonry[J]. Journal of Shenyang Jianzhu University, 2010, 26(1): 27-30.
6 王全凤, 陈莹, 黄奕辉, 等. GFRP复合材料与粘土砖单剪粘结试验研究[J]. 建筑结构, 2008, 38(5): 106-108.
Wang Quan-feng, Chen Ying, Huang Yi-hui, et al. Experimental study on single shear strength between GFRP and clay brick[J]. Building Structure, 2008, 38(5): 106-108.
7 陈莹,王全凤,黄奕辉,等. GFRP 复合材料与砖界面粘结性能的数值模拟[J]. 工程力学, 2007, 24(5): 119-124.
Chen Ying, Wang Quan-feng, Huang Yi-hui, et al. Numerical analysis for bonding in the interface between GFRP and clay brick[J]. Engineering Mechanics, 2007, 24(5): 119-124.
8 刘连新. 察尔汗盐湖及超盐渍土地区混凝土侵蚀及预防初探[J]. 建筑材料学报, 2001, 4(4): 395-400 .
Liu Lian-xin. Brief introduction on the study of erosion and prevention of concrete in salt lake and saline soil area of chaerhan, chaidamu[J]. Journal of Building Materials, 2001, 4(4): 395-400.
9 袁杰, 陈歆, 何虹霖, 等. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报: 工学版, 2020,50(2): 641-647.
Yuan Jie, Chen Xin, He Hong-lin, et al. Repair and rejuvenation of cracked concrete by microbiologically -induced calcite-precipitation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 641-647.
10 Yarigarravesh M, Toufigh V, Mofid M. Experimentaland analytical evaluation of FRPs bonded to masonry-long term[J]. Surface & Coatings Technology, 2018, 344(1): 729-741.
11 Tedeschi C, Kwiecień A, Valluzzi M R,et al. Effect of thermalageing and salt decay on bond between FRP and masonry[J]. Materials and Structures,2014,47(12): 2051 -2065.
12 李趁趁, 高丹盈, 黄承逵. 碳纤维与玻璃纤维增强聚合物复合材料耐久性[J]. 哈尔滨工业大学学报, 2009, 41(2): 150-154.
Li Chen-chen, Gao Dan-ying, Huang Cheng-kui. Durability of carbon and glass fiber reinforced polymer composites[J]. Journal of Harbin Institute of Technology, 2009, 41(2): 150-154.
13 雷真, 白柳, 郭洪波, 等. FRP加固砌体结构的界面粘结性能综述[J]. 材料科学, 2018, 8(11): 1038-1046.
Lei Zhen, Bai Liu, Guo Hong-bo, et al. A review of interfacial adhesion propertiesbetween FRP and masonry structures reinforced with FRP[J]. Material Sciences,2018, 8(11): 1038-1046.
14 宦文娟. 多因素耦合作用下砖及其砌体的性能劣化规律与机理研究[D]. 南京: 东南大学土木工程学院, 2013.
Huan Wen-juan. Investigation of deterioration and mechanism of brick and masonry subjected to multi-factor coupling effect[D]. Nanjing: College of Civil Engineering, Southeast University, 2013.
15 马蕾, 温勇, 张文艺, 等. 干湿循环作用下灌注性水泥砂浆抗硫酸盐侵蚀研究[J]. 新型建筑材料, 2019, 46(3): 40-44.
Ma Lei, Wen Yong, Zhang Wen-yi,et al. Study on resistance to sulfate attack of poured cement mortar under dry and wet cycle[J]. New Building Materials, 2019, 46(3): 40-44.
16 . 普通混凝土长期性能和耐久性能试验方法标准 [S].
17 刘明, 刘新强, 刘骥夫, 等. FRP加固砌体拉拔力与纤维布应变关系的试验研究[J]. 福州大学学报: 自然科学版, 2005: 33(): 223-227.
Liu Ming, Liu Xin-qiang, Liu Ji-fu,et al. Experimental study on relationships of strain in FRP sheet versus pulling force applied on FRP strengthened masonry[J]. Journal of Fuzhou University (Natural Science Edition), 2005, 33(Sup.1): 223-227.
18 Ferracuti B, Savoia M, Mazzotti C. Interface law for FRP-concrete delamination[J]. Composite Structures, 2007, 80(4): 523-531.
19 黄奕辉. FRP 与砖界面行为及其应用研究[D].厦门: 华侨大学土木工程学院, 2008.
Huang Yi-hui. Studies on FRP-brick interface and its application[D]. Xiamen: College of Civil Engineering, Hua Qiao University, 2008.
[1] Liang FAN,Ying-ming XU,Yang TAN. Interface slip calculation of prefabricated steel⁃concrete composite beams with clustering studs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2533-2541.
[2] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[3] Hui ZHANG,Zhi-ling NIE,Hong-wei XIAO,Dan-xing WANG. Color design of human⁃computer interaction interface for intelligent cockpit of unmanned vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1315-1321.
[4] Bo-wen GUAN,Wen-jin DI,Fa-ping WANG,Jia-yu WU,Shuo-wen ZHANG,Zhi-xun JIA. Damage of concrete subjected to sulfate corrosion under dry⁃wet cycles and alternating loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1112-1121.
[5] Gui-he QIN,Man-ying WANG,Ming-hui SUN. Research on a pressure-based interaction paradigm for multimedia terminal [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3186-3193.
[6] Kai CUI,Peng-fei XU,Jing-jing HUANG,Xiang-peng YU,Xiao-hai WANG. Comparison of bond performance between grouting slurry and soil interface in soil sites and durability in arid environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2856-2868.
[7] Hai DENG,Chao WANG,Jing-hao YANG,Li-zhong WANG,Ming-hui WANG,Zhi-gang LI. Research progress of carbon fiber reinforced thermoplastic composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 18-30.
[8] Zhong-hua SHI,Quan-wei SONG,Zhen-hang KANG,Qiang XIE,Ji-feng ZHANG. Numerical simulation and experiment on ultrasonic deicing system of airfoil structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1561-1573.
[9] Yi-ying CHEN,Jing-fu JIN,Jia-xu WANG,Ying-chun QI,Lin WANG,Ting-kun CHEN. Stress characteristic of ice adhesion interface during freezing process [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2466-2473.
[10] You-zhi WANG,Wen-shuai ZHAO,Jin-zhang LIU,Kai QIU,Sen JIA. Mechanical performance of under⁃bridge connectors of cable⁃stayed system strengthened bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2376-2384.
[11] Yi-ying CHEN,Jing-fu JIN,Qian CONG,Ting-kun CHEN,Lu-quan REN. Influence of media with different low freezing points on ice adhesion strength [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1926-1932.
[12] Deng-hui GAO,Yi-chuan XING,Min-xia GUO,Ai-jun ZHANG,Xian-tao WANG,Bao-hong MA. Modified hyperbola model of interface between unsaturated remolded loess and concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 156-164.
[13] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[14] ZHENG Xiao-yi, SUN Da-qian, LI Xin, DU Gui-gang, XIN Wei-da, REN Zhen-an. Microstructure and properties of cladded Al-Nb layers reinforced by NbAl3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1531-1536.
[15] JIANG Hai-yu, LIU Yu-hai, SUN Hai-lin, XU Ke-bin, BAI Tian-zeng, CHEN Zu-bin. Stratum undulation velocity model optimization algorithm for microseismic monitoring on surface [J]. 吉林大学学报(工学版), 2017, 47(6): 1969-1975.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!