Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 2093-2103.doi: 10.13229/j.cnki.jdxbgxb.20221143

Previous Articles    

Distributed robust tracking control for multiple unmanned aerial vehicles: theory and experimental verification

Bin XIAN1(),Yin-xin WANG1,Ling WANG2   

  1. 1.School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
    2.Tianjin Navigation Instrument Research Institute,Tianjin 300451,China
  • Received:2022-09-05 Online:2024-07-01 Published:2024-08-05

Abstract:

The distributed trajectory tracking problem for multiple UAVs under unknown external disturbance is investigated. A new nonlinear robust trajectory tracking strategy for multiple UAVs is proposed. The dynamic model for the UAVs' formation is illustrated in the Tangent frame. For the trajectory tracking problem, a robust formation tracking control strategy based on robust integral of the signum of error (RISE) is designed to compensate for the effects of unknown external disturbances, which improves the robustness of the UAVs' formation system. Based on the Lyapunov stability analysis, it is proved that the global asymptotic convergence of the coordination errors and the semi-global asymptotic convergence of the UAVs' position tracking errors are achieved. The proposed formation control strategy is validated via real-time experiments that are performed on the self-build UAVs' formation flight control testbed. Flights without wind disturbance and flights with disturbance are all performed. The performance comparison experiment with the conventional sliding mode control algorithm is performed. The experimental results show that the designed control strategy can achieve good coordinated trajectory tracking of multiple UAVs, and has better control performance compared with normal sliding mode control law.

Key words: control science and engineering, UAV formation, distributed trajectory tracking control, cooperative control, disturbance rejection control, experimental verification

CLC Number: 

  • TP273

Fig.1

Trajectory tracking of multiple UAVs' system"

Fig.2

Multiple quadrotors′ testbed"

Fig.3

Intercommunication graph of UAVs"

Table 1

Parameters of experiment"

参数名称参数值
rd[0,0,1]T
Λdiag([5,10,10]T)
Dvdiag([9,9,9]T)
ksdiag([3,2,1.5]T)
λdiag([2,1.6,2]T)
αdiag([0.08,0.12,0.05]T)
βdiag([0.006,0.008,0.006]T)

Fig.4

Signal flowchart of control system"

Fig.5

Experimental scene of multiple UAVs"

Fig.6

Time evolution of γi in experiment 1"

Fig.7

Quadrotors' space trajectory in experiment 1 with RISE controller"

Fig.8

Trajectory tracking position error of multiple UAVs in experiment 1"

Fig.9

Quadrotors' control output of X and Y channel in experiment 1"

Table 2

Error analysis of trajectory tracking position of multiple UAVs in experiment 1"

误差通道SMC最大误差RISEC最大误差SMC均方根误差RISEC均方根误差
e1x/m0.161 10.024 00.060 20.008 7
e1y/m0.287 60.024 20.114 40.008 3
e1z/m0.045 70.021 70.016 20.008 2
e2x/m0.270 60.061 40.096 60.024 7
e2y/m0.239 40.039 50.082 10.015 5
e2z/m0.058 20.030 60.017 00.014 4
e3x/m0.246 40.073 00.108 80.021 5
e3y/m0.212 90.083 40.088 10.024 7
e3z/m0.044 30.042 90.015 40.014 8

Fig.10

Trajectory tracking position error of multiple UAVs in experiment 2"

Table 3

Error analysis of trajectory tracking position of multiple UAVs in experiment 2"

误差

通道

SMC

最大误差

RISEC

最大误差

SMC

均方根误差

RISEC

均方根误差

e1x/m0.244 10.057 30.090 80.019 1
e1y/m0.354 30.077 50.165 00.024 0
e1z/m0.067 90.042 90.014 30.018 8
e2x/m0.209 60.066 70.105 30.028 0
e2y/m0.229 00.053 60.098 20.019 6
e2z/m0.036 70.032 90.012 30.014 4
e3x/m0.303 20.069 50.116 10.021 8
e3y/m0.200 90.076 80.104 50.031 4
e3z/m0.031 20.063 60.011 70.020 4

Fig.11

Quadrotors' control output of X and Y channel in experiment 2"

1 Elmokadem T. Distributed coverage control of quadrotor multi-UAV systems for precision agriculture[J]. IFAC-Papers Online, 2019, 52(30): 251-256.
2 鲜斌,许鸣镝,王岭. 分布式无人机队列控制与动态障碍规避设计[J]. 控制与决策, 2022, 37(9): 2226-2234.
Xian Bin, Xu Ming-di, Wang Ling. Distributed unmanned aerial vehicle platoon control with dynamic obstacle avoidance[J]. Control and Decision, 2022, 37(9): 2226-2234.
3 Lagkas T, Argyriou V, Bibi S, et al. UAV IoT framework views and challenges: towards protecting drones as "Things"[J]. Sensors, 2018, 18(11):No. 4015.
4 Videras Rodríguez M, Melgar S G, Cordero A S, et al. A critical review of unmanned aerial vehicles (UAVs) use in architecture and urbanism: scientometric and bibliometric analysis[J]. Applied Sciences, 2021, 11(21): No.9966.
5 Ali Z A, Israr A, Alkhammash E H, et al. A leader-follower formation control of multi-UAVs via an adaptive hybrid controller[J]. Complexity, 2021, 2021:No. 9231636.
6 Turpin M, Michael N, Kumar V. Trajectory design and control for aggressive formation flight with quadrotors[J]. Autonomous Robots, 2012, 33(1): 143-156.
7 Zhou D, Wang Z, Schwager M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures[J]. IEEE Transactions on Robotics, 2018, 34(4): 916-923.
8 Dong X W, Yu B C, Shi Z Y, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348.
9 Xie W, Cabecinhas D, Cunha R, et al. Cooperative path following control of multiple quadcopters with unknown external disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 667-679.
10 王丹丹, 宗群, 张博渊, 等. 多无人机完全分布式有限时间编队控制[J]. 控制与决策, 2019, 34(12): 2656-2660.
Wang Dan-dan, Zong Qun, Zhang Bo-yuan, et al. Fully distributed finite-time formation control for multiple UAVs[J]. Control and Decision, 2019, 34(12): 2656-2660.
11 Aggarwal S, Kumar N. Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges[J]. Computer Communications, 2020, 149: 270-299.
12 Zhang D, Duan H. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning[J]. Neurocomputing, 2018, 313: 229-246.
13 蒋婉玥,王道波,王寅,等. 基于时变向量场的多无人机编队集结控制方法[J]. 控制理论与应用, 2018, 35(9): 1215-1228.
Jiang Wan-yue, Wang Dao-bo, Wang Yin, et al. A vector field based method for multi-UAV simultaneous arrival[J]. Control Theory & Applications, 2018, 35(9): 1215-1228.
14 张佳龙,闫建国,张普. 基于自适应方法的多无人机编队队形控制[J]. 航空学报, 2020, 41(1): 234-247.
Zhang Jia-long, Yan Jian-guo, Zhang Pu. Multi-UAV formation forming control based on adaptive method under wind field disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 234-247.
15 Liao F, Teo R, Wang J L, et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 270-277.
16 Hua Y Z, Dong X W, Han L, et al. Finite-time time-varying formation tracking for high-order multiagent systems with mismatched disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(10): 3795-3803.
17 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用, 2020, 37(11): 2423-2431.
Li Zheng-ping, Xian Bin. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications, 2020, 37(11): 2423-2431.
18 鲜斌,李杰奇,古训. 基于非线性扰动观测器的无人机地面效应补偿[J]. 吉林大学学报:工学版, 2022, 52(8): 1926-1933.
Xian Bin, Li Jie-qi, Gu Xun. Ground effects compensation for an unmanned aerial vehicle via nonlinear disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1926-1933.
19 Cunha R, Antunes D, Gomes P, et al. A path-following preview controller for autonomous air vehicles[C]∥AIAA Guidance, Navigation, and Control Conference and Exhibit,Keystone, USA,2006: 6715.
20 Xian B, Dawson D M, de Queiroz M S, et al. A continuous asymptotic tracking control strategy for uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2004, 49(7): 1206-1211.
21 温家鑫,赵国荣,张超,等. 无人机三维编队保持滑模控制器设计[J]. 电光与控制, 2020,27(5): 14-18.
Wen Jia-xin, Zhao Guo-rong, Zhang Chao, et al. Design of a sliding mode controller for three-dimensional formation keeping of UAVs[J]. Electronics Optics&Control, 2020, 27(5): 14-18.
[1] Shou-tao LI,Jia-lin LI,Qing-yu MENG,Hong-yan GUO. Loop-closure detection algorithm based on point cloud histogram and vehicle positioning method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2395-2403.
[2] Jiang-ping HU,Zi-can ZHOU,Bo CHEN. On fixed⁃time multi⁃target localization and circumnavigation control using bearing measurements [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 923-932.
[3] Xiao-yi WANG,Di-yi LIU,Jia-bin YU,Zhuo-yun HE,Zhi-yao ZHAO. Fault detection method of multirotor unmanned aerial vehicle formation in complex wind field environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 823-831.
[4] Lei YUAN,Ren HE. Active disturbance rejection control of slip ratio based on antilock brake system brake bandwidth parameter tuning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3335-3341.
[5] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[6] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[7] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[8] De-feng HE,Jie LUO,Xiao-xiang SHU. Delay-feedback predictive cruise control of autonomous and connected vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 349-357.
[9] Wen⁃jing WU,Run⁃chao CHEN,Hong⁃fei JIA,Qing⁃yu LUO,Di SUN. Collaborative control method of vehicles in U⁃turn zone under environment of cooperative vehicle infrastructure system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1100-1106.
[10] LI Jing, HAN Zuo-yue, YANG Wei, XING Guo-cheng, ZHOU Yu. Drive system for magnetorheological suspension based on nonlinear damper electric model [J]. 吉林大学学报(工学版), 2018, 48(3): 645-651.
[11] WANG Chun-yang, XIN Rui-hao, SHI Hong-wei. Decreasing time delay auto-disturbance rejection control method for large time delay systems [J]. 吉林大学学报(工学版), 2017, 47(4): 1231-1237.
[12] LIU Yang, SUN Ze-chang, WANG Meng. Brake force cooperative control and test for integrated electro-hydraulic brake system [J]. 吉林大学学报(工学版), 2016, 46(3): 718-724.
[13] WEI Wei, DAI Ming, LI Jia-quan, MAO Da-peng, WANG Hao. Design of airborne opto-electric platform control system based on ADRC and repetitive control theory [J]. 吉林大学学报(工学版), 2015, 45(6): 1924-1932.
[14] WANG Yan-zhong, HOU Liang-wei, LYU Qing-jun, ZHAO Xing-fu, WU Can-hui. Processing technology of face gear complex surface based on bus control [J]. 吉林大学学报(工学版), 2015, 45(6): 1836-1843.
[15] MA Wen-xing, ZHANG Yan, LEI Yu-long. Design and test of control system of hydrodynamic automotive transmission for heavy vehicle [J]. 吉林大学学报(工学版), 2015, 45(5): 1455-1460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!