Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2423-2431.doi: 10.13229/j.cnki.jdxbgxb.20221424

Previous Articles    

Working performance of vertical screw stirring mill based on discrete element method

Peng-shu XIE(),Da CUI(),Guo-qiang WANG,Kai LI   

  1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2022-11-10 Online:2024-09-01 Published:2024-10-28
  • Contact: Da CUI E-mail:xieps20@mails.jlu.edu.cn;cuida@jlu.edu.cn

Abstract:

The main structure and characteristic parameters affecting the working performance of vertical screw stirring mill were analyzed and studied, and the selection method of key working parameters was proposed. Based on the discrete element method, the simulation model of vertical screw stirring mill was established, and the effects of spindle speed, agitator lead and grinding medium size distribution on grinding performance were analyzed. The comprehensive grinding performance index was put forward, orthogonal tests were carried out for each parameter, and the quantitative value of grinding effect was obtained, and then the optimal working parameter combination under specific weight coefficient was obtained, which provided a reference method for the optimal design of the mill.

Key words: vertical screw stirring mill, grinding performance, discrete element, operating parameters, orthogonal test

CLC Number: 

  • TD453

Table 1

Model size"

参数数值参数数值
筒体内径/mm3 288螺旋个数/mm2
搅拌器直径/mm2 500导程/mm2 000
搅拌器轴径/mm520搅拌器与筒体底部的距离/mm236.5
叶片厚度/mm100搅拌叶片高度/mm4 000

Table 2

Material properties"

参数数值参数数值
工作转速/(r·min-124恢复系数0.5
仿真时长/s35滚动摩擦因数0.01
仿真时间步长/%30静摩擦因数0.5

Fig.1

Schematic diagram of velocity distribution of grinding media"

Fig.2

Pressure distribution diagram"

Fig.3

Distribution of agitator wear"

Fig.4

Change of power and torque with speed"

Fig.5

Change of vertical force and wear of agitator with rotating speed"

Fig.6

Variation of total kinetic energy and average vertical velocity of grinding medium with rotating speed"

Fig.7

Variation of average normal and tangential impact forces of grinding media with rotating speed"

Fig.8

Torque and power change with grinding medium size"

Fig.9

Change of force and wear of agitator with size of grinding medium"

Fig.10

Variation of total kinetic energy of grinding media and average rising speed of central zone with size of grinding media"

Fig.11

Average normal and tangential impact forces of grinding media changing with the size of grinding media"

Fig.12

Power and torque variation with lead"

Fig.13

Change of vertical force and wear of agitator with lead"

Fig.14

Variation of total kinetic energy of grinding media and average vertical velocity in the central zone with lead"

Fig.15

Variation of average normal and tangential impact forces of grinding media with lead"

Table 3

Test factors and levels"

水平因 素
A转速/(r·min-1B导程/mmC研磨介质分布/mm
1181 50080
2242 00090
3302 500100
4363 00080~100(均匀分布)

Table 4

Test project"

编号A转速/(r·min-1B导程/mmC研磨介质分布/mm
1181 50080~100(均匀分布)
2182 000100
3182 50080
4183 00090
5241 500100
6242 00080~100(均匀分布)
7242 50090
8243 00080
9301 50080
10302 00090
11302 50080~100(均匀分布)
12303 000100
13361 50090
14362 00080
15362 500100
16363 00080~100(均匀分布)

Table 5

Test results"

编号xˉ1,ixˉ2,ixˉ3,ixˉ4,ixˉ5,iWi
10.6920.8250.8690.7780.7810.440
20.8280.5430.6000.9160.9130.524
30.7490.3501.3490.5330.5320.610
40.7670.3330.8810.7640.7630.569
50.9591.2750.6331.0971.0920.471
60.9500.8460.9460.8840.8900.579
70.9640.6180.9550.9050.9040.635
80.9190.4601.4520.6850.6830.708
91.0471.5541.5310.7170.7160.564
101.0641.2110.9821.0351.0310.587
111.1220.9330.9751.1061.1160.680
121.1560.7940.6561.5011.5020.728
131.1262.4840.9741.1921.1860.385
141.2021.4251.5540.8530.8570.685
151.2811.2950.6551.6891.6850.714
161.1741.0550.9881.3471.3510.723
1 石立. 基于Simulink立式螺旋搅拌磨机启动规律研究[D]. 长沙:长沙矿冶研究院有限责任公司, 2013.
Shi Li. Research on start-up law of vertical spiral stirring mill based on Simulink[D]. Changsha: Changsha Mining and Metallurgy Research Institute Co., Ltd., 2013.
2 Datta A, Rajamani R K. A direct approach of modeling batch grinding in ball mills using population balance principles and impact energy distribution[J]. International Journal of Mineral Processing, 2002, 64(4): 181-200.
3 Van Nierop M A, Glover G, Hinde A L, et al. A discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill[J]. International Journal of Mineral Processing, 2001, 61(2): 77-92.
4 Bor A, Batjargal U, Jargalsaikhan B, et al. Particle morphology change and quantitative input energy variation during stirred ball milling process by DEM simulation on various experimental conditions[J]. Korean Journal of Materials Research, 2018, 28(3): 148-158.
5 Sinnott M, Cleary P W, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 1 - Media motion, energy consumption and collisional environment[J]. Minerals Engineering, 2006, 19(15): 1537-1550.
6 Wilkinson S K, Turnbull S A, Yan Z, et al. A parametric evaluation of powder flowability using a Freeman rheometer through statistical and sensitivity analysis: a discrete element method (DEM) study[J]. Computers & Chemical Engineering, 2017, 97: 161-174.
7 Fukui S, Tsunazawa Y, Hisatomi S, et al. Effect of agitator shaft direction on grinding performance in media stirred mill: investigation using DEM simulation[J]. Materials Transactions, 2018, 59(3): 488-493.
8 Daraio D, Villoria J, Ingram A, et al. Investigating grinding media dynamics inside a vertical stirred mill using the discrete element method: effect of impeller arm length[J]. Powder Technology, 2020, 364: 1049-1061.
9 Oliveira A L R, Rodriguez V A, De Carvalho R M, et al. Mechanistic modeling and simulation of a batch vertical stirred mill[J]. Minerals Engineering, 2020, 156: No.106487.
10 de Oliveira A L R, De Carvalho R M, Tavares L M. Predicting the effect of operating and design variables in grinding in a vertical stirred mill using a mechanistic mill model[J]. Powder Technology, 2021, 387: 560-574.
11 袁东. 转速和填充率对立式搅拌磨粉碎效果影响研究[D]. 昆明:昆明理工大学机电工程学院, 2013.
Yuan Dong. Research the effect of speed and filling rate on the vertical agitate mill[D]. Kunming: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, 2013.
12 母福生, 杨鹏. 搅拌磨机介质运动离散元数值模拟分析[J]. 中国机械工程, 2012, 23(20): 2465-2468.
Mu Fu-sheng, Yang Peng. Analysis of dem numerical simulation of media movement for a stirred mill[J]. China Mechanical Engineering, 2012, 23 (20): 2465-2468.
13 邓荣根. 基于离散元超细混合及粉碎的仿真[D]. 上海: 华东理工大学机械与动力工程学院, 2013.
Deng Rong-gen. Simulation of ultrafine mixture and disintegration based on discrete element method[D]. Shanghai: School of Mechanical and Power Engineering, East China University of Science and Technology, 2013.
14 朱春辉. 基于EDEM的双腔体立式搅拌磨机数值仿真研究[D]. 徐州:中国矿业大学化工学院, 2018.
Zhu Chun-hui. Study on the numerical simulation of the double chamber vertical stirred mill based on EDEM[D]. Xuzhou:School of Chemical Engineering & Technology, China University of Mining and Technology, 2018.
15 张国旺. 超细搅拌磨机的流场模拟和应用研究[D]. 长沙: 中南大学资源加工与生物工程学院, 2005.
Zhang Guo-wang.Flowfield numerical simulation and application of ultrafine stirred mill[D]. Changsha: School of Minerals Processing and Bioengineering,Central South University, 2005.
16 姚宗伟, 高旭东, 刘刚, 等. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报:工学版, 2021, 51(5): 1642-1650.
Yao Zong-wei, Gao Xu-dong, Liu Gang, et al. Research on working performance of vertical screw stirring mill based on numerical simulations[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 51(5): 1642-1650.
17 黄胤淇. 磨矿条件对立式搅拌磨磨矿产品粒度特性的影响及应用[D]. 昆明:昆明理工大学国土资源工程学院, 2019.
Huang Yin-qi. Effect of grinding conditions on particle size characteristics of grinding products from vertical agitating mill and its application[D]. Kunming: Faculty of Land Resources Engineering, Kunming University of Science and Technology,2019.
18 任廷志, 李卓, 刘长远,等. 基于离散元法的塔磨机数值模拟分析[J]. 中国粉体技术, 2016, 22(4): 88-91.
Ren Ting-zhi, Li Zhuo, Liu Chang-yuan, et al. Numerical simulation analysis of tower mill based on discrete element method[J]. China Powder Science and Technology, 2016, 22(4): 88-91.
19 桑艳伟. 基于离散单元法的立磨机介质球运动及其关键参数研究[D].长沙: 长沙矿冶研究院, 2018.
Sang Yan-wei. Research on the motion and key parameters of medium ball in vertical mill based on discrete element method[D]. Changsha: Changsha Research Institute of Mining and Metallurgy, 2018.
20 徐长锋. 考虑海泡石矿粉粒径及分布宽度的螺旋搅拌磨机研制[D]. 湘潭:湘潭大学机械工程与力学学院, 2021.
Xu Chang-feng. Research and development of a spiral stirred mill considering the size and distribution width of sepiolite powder[D].Xiangtan: School of Mechanical Engineering and Mechanics,Xiangtan University, 2021.
21 廖阳. 搅拌磨机磨筒结构对磨矿介质运动的影响研究[D]. 昆明: 昆明理工大学机电工程学院, 2022.
Liao Yang. The influence of grinding cylinder structure of stirred mill on the motion of grinding media[D]. Kunming: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, 2022.
22 Esteves P M, Mazzinghy D B, Galery R, et al. Predictive modelling of vertical stirred mills liner wear using vibration signature analysis[J/OL].[2022-11-02].
[1] Xin-hui LIU,Zhi-lin XIANG,Peng TAN,Wei CHEN,Ji-yu FENG. Analysis and optimization of internal flow field of diffuser structure of cooling system based on Fluent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1831-1843.
[2] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[3] Yuan-yi LIU,Sheng-jie YU,Bei XU,Xian-liang WANG,Fa-cheng SONG. Experimental study on in-situ tilling plow in facility agriculture based on discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1153-1165.
[4] Yi LI,Chen-yang LYU,Ji-cai LIANG,Ce LIANG. Section deformation analysis of irregular Y-shaped aluminum profile of multi-point stretch-bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 105-113.
[5] Chun-di SI,Ya-ning CUI,Zhong-yin XU,Tao-tao FAN. Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1719-1728.
[6] Guo-qiang DUN,Wen-hui LIU,Ning MAO,Xing-peng WU,Wen-yi JI,Hong-yan MA. Optimization design and experiment of alternate post changing seed metering device for soybean plot breeding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 285-296.
[7] Yong PENG,Xiu-fang ZHANG,Ze-yu GUO,Xue-yuan LU,Yan-wei LI. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 178-187.
[8] Duan-yang GENG,Yan-cheng SUN,Xiao-dong MU,Guo-dong ZHANG,Hui-xin JIANG,Jun-ke ZHU. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 693-702.
[9] Xing-yu WAN,Qing-xi LIAO,Ya-jun JIANG,Yi-yin SHAN,Yu ZHOU,Yi-tao LIAO. Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2735-2745.
[10] Jian-ping LI,Yong-liang BIAN,Xin YANG,Peng-fei WANG,Xin-hao LI,Chun-lin XUE. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2474-2485.
[11] Zong-wei YAO,Xu-dong GAO,Gang LIU,Qiu-shi BI. Research on working performance of vertical screw stirring mill based on numerical simulations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1642-1650.
[12] Yong PENG,Han-duo YANG,Xue-yuan LU,Yan-wei LI. Effect of void characteristics on virtual shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
[13] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[14] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[15] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!