吉林大学学报(医学版) ›› 2021, Vol. 47 ›› Issue (5): 1323-1330.doi: 10.13481/j.1671-587X.20210534
收稿日期:
2020-11-02
出版日期:
2021-09-28
发布日期:
2021-10-26
通讯作者:
陆新良
E-mail:lux@zju.edu.cn
作者简介:
李余轶(1996-),女,安徽省安庆市人,在读硕士研究生,主要从事消化道肿瘤基础和临床方面的研究。
基金资助:
Received:
2020-11-02
Online:
2021-09-28
Published:
2021-10-26
摘要:
基于病理学特征的危险度分层标准是目前评估胃肠道间质瘤(GIST)进展潜能与预后的主要方法。肿瘤转移及转移灶分布范围和手术切缘也是决定患者预后的重要指标,并且影响手术或靶向治疗的决策。同时,疾病的进展和转归是各种内在遗传和表观遗传调控作用的累积效应。随着生物学检测技术的发展,一系列分子生物学标志物,包括v-kitHardy-Zuckerman4猫科肉瘤病毒致癌基因同源物(KIT)或血小板源性生长因子受体α多肽(PDGFRA)基因突变、特定的单核苷酸多态性(SNPs)、DNA甲基化、微小RNA(miRNA)、Raf激酶抑制蛋白(RKIP)和肿瘤增殖抗原(Ki67)等在评估GIST恶性进展潜能、靶向治疗效果和预后方面显示出潜在的应用前景。研究预后相关分子生物学标志物有利于理解GIST进展及复发的内在机制,并有可能挖掘潜在的治疗靶点。现回顾近年来关于GIST预后因素的相关研究,综述影响GIST预后的临床病理学指标、分子生物学标志物及其应用价值,从而对GIST进展风险和预后进行更全面的评估,为制定个体化的精准医疗方案提供参考。
中图分类号:
李余轶,黄梦贻,陆新良. 临床病理学指标和分子生物学标志物评估胃肠道间质瘤预后的研究进展Research progress in clinicopathological indicators and molecular biomarkers in assessing prognosis of gastrointestinal stromal tumors[J]. 吉林大学学报(医学版), 2021, 47(5): 1323-1330.
1 | CORLESS C L, HEINRICH M C. Molecular pathobiology of gastrointestinal stromal sarcomas[J]. Annu Rev Pathol, 2008, 3: 557-586. |
2 | SCHMIEDER M, HENNE-BRUNS D, MAYER B, et al. Comparison of different risk classification systems in 558 patients with gastrointestinal stromal tumors after R0-resection[J]. Front Pharmacol, 2016, 7: 504. |
3 | CAMERON S. Long-term adjuvant treatment of gastrointestinal stromal tumors (GIST) with imatinib-a comment and reflection on the PERSIST-5 study[J]. Transl Gastroenterol Hepatol, 2018, 3: 16. |
4 | CHEN T, XU L, YE L, et al. A new nomogram for recurrence-free survival prediction of gastrointestinal stromal tumors: Comparison with current risk classification methods[J].Eur J Surg Oncol,2019,45(6):1109-1114. |
5 | LIU X, CHU K M. Molecular biomarkers for prognosis of gastrointestinal stromal tumor[J]. Clin Transl Oncol, 2019, 21(2): 145-151. |
6 | GAO Z, WANG C, XUE Q, et al. The cut-off value of tumor size and appropriate timing of follow-up for management of minimal EUS-suspected gastric gastrointestinal stromal tumors[J]. BMC Gastroenterol, 2017, 17(1): 8. |
7 | HU M L, WU K L, CHANGCHIEN C S, et al. Endosonographic surveillance of 1-3 cm gastric submucosal tumors originating from muscularis propria[J].World J Gastroenterol,2017,23(12):2194-2200. |
8 | WANG M, XUE A, YUAN W, et al. Clinicopathological features and prognosis of small gastric gastrointestinal stromal tumors (GISTs)[J]. J Gastrointest Surg, 2019, 23(11): 2136-2143. |
9 | ZHENG J, LI R, QIU H, et al. Tumor necrosis and >20 mitoses per 50 high-power fields can distinguish ‘very high-risk’ and ‘highest-risk’ within ‘high-risk’ gastric gastrointestinal stromal tumor[J]. Future Oncol, 2018, 14(7): 621-629. |
10 | MIETTINEN M, LASOTA J. Gastrointestinal stromal tumors: pathology and prognosis at different sites[J]. Semin Diagn Pathol, 2006, 23(2): 70-83. |
11 | CORLESS C L, BALLMAN K V, ANTONESCU C R,et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial[J]. J Clin Oncol, 2014, 32(15): 1563-1570. |
12 | JOENSUU H. Risk stratification of patients diagnosed with gastrointestinal stromal tumor[J]. Hum Pathol, 2008, 39(10): 1411-1419. |
13 | CASALI P G, ABECASSIS N, ARO H T, et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2018, 29():iv68-iv78. |
14 | NISHIDA T, HØLMEBAKK T, RAUT C P, et al. Defining tumor rupture in gastrointestinal stromal tumor[J]. Ann Surg Oncol, 2019, 26(6): 1669-1675. |
15 | HØLMEBAKK T, HOMPLAND I, BJERKEHAGEN B,et al. Recurrence-free survival after resection of gastric gastrointestinal stromal tumors classified according to a strict definition of tumor rupture: a population-based study[J]. Ann Surg Oncol, 2018, 25(5): 1133-1139. |
16 | YANG D Y, WANG X, YUAN W J, et al. Metastatic pattern and prognosis of gastrointestinal stromal tumor (GIST):a SEER-based analysis[J]. Clin Transl Oncol, 2019, 21(12): 1654-1662. |
17 | HOMPLAND I, BRULAND Ø S, HØLMEBAKK T, et al. Prediction of long-term survival in patients with metastatic gastrointestinal stromal tumor: analysis of a large, single-institution cohort[J].Acta Oncol,2017,56(10):1317-1323. |
18 | SATO S, TSUJINAKA T, MASUZAWA T, et al. Role of metastasectomy for recurrent/metastatic gastrointestinal stromal tumors based on an analysis of the Kinki GIST registry[J]. Surg Today, 2017, 47(1): 58-64. |
19 | CAI Z, YIN Y, SHEN C, et al. Role of surgical resection for patients with recurrent or metastatic gastrointestinal stromal tumors: a systematic review and meta-analysis[J]. Int J Surg, 2018, 56: 108-114. |
20 | SCHRAGE Y, HARTGRINK H, SMITH M, et al. Surgical management of metastatic gastrointestinal stromal tumour[J]. Eur J Surg Oncol, 2018, 44(9): 1295-1300. |
21 | BAUER S, RUTKOWSKI P, HOHENBERGER P, et al. Long-term follow-up of patients with GIST undergoing metastasectomy in the era of imatinib: analysis of prognostic factors (EORTC-STBSG collaborative study)[J].Eur J Surg Oncol,2014,40(4):412-419. |
22 | SHANNON A B, SONG Y, FRAKER D L, et al. Do microscopic surgical margins matter for primary gastric gastrointestinal stromal tumor? [J]. Surgery, 2021, 169(2): 419-425. |
23 | HØLMEBAKK T, BJERKEHAGEN B, HOMPLAND I, et al. Relationship between R1 resection, tumour rupture and recurrence in resected gastrointestinal stromal tumour[J]. Br J Surg, 2019, 106(4): 419-426. |
24 | PANTUSO G, MACAIONE I, TAVERNA A, et al. Surgical treatment of primary gastrointestinal stromal tumors (GISTs):Management and prognostic role of R1 resections[J]. Am J Surg, 2020, 220(2): 359-364. |
25 | GRONCHI A, BONVALOT S, POVEDA VELASCO A, et al. Quality of surgery and outcome in localized gastrointestinal stromal tumors treated within an international intergroup randomized clinical trial of adjuvant imatinib[J].JAMA Surg,2020,155(6): e200397. |
26 | CORLESS C L, BARNETT C M, HEINRICH M C. Gastrointestinal stromal tumours: origin and molecular oncology[J]. Nat Rev Cancer, 2011, 11(12): 865-878. |
27 | ZONG L, CHEN P. Prognostic value of KIT/PDGFRA mutations in gastrointestinal stromal tumors: a meta-analysis[J]. World J Surg Oncol, 2014, 12: 71. |
28 | LASOTA J, DANSONKA-MIESZKOWSKA A, SOBIN L H, et al. A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential[J]. Lab Invest, 2004, 84(7): 874-883. |
29 | ROSSI S, GASPAROTTO D, MICELI R, et al. KIT, PDGFRA, and BRAF mutational spectrum impacts on the natural history of imatinib-naive localized GIST: a population-based study[J]. Am J Surg Pathol, 2015, 39(7): 922-930. |
30 | SZUCS Z, THWAY K, FISHER C, et al. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications[J]. Future Oncol, 2017, 13(1): 93-107. |
31 | WOZNIAK A, RUTKOWSKI P, PISKORZ A, et al. Prognostic value of KIT/PDGFRA mutations in gastrointestinal stromal tumours (GIST):Polish Clinical GIST Registry experience[J].Ann Oncol, 2012,23(2): 353-360. |
32 | JOENSUU H, RUTKOWSKI P, NISHIDA T, et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence[J]. J Clin Oncol, 2015, 33(6): 634-642. |
33 | DEMETRI G D, WANG Y F, WEHRLE E, et al. Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors[J]. J Clin Oncol, 2009, 27(19): 3141-3147. |
34 | QIAN Y, SUN L N, LIU Y J, et al. Genetic polymorphisms and adverse events on unbound imatinib and its active metabolite concentration in patients with gastrointestinal stromal tumors[J]. Front Pharmacol, 2019, 10: 854. |
35 | VERBOOM M C, KLOTH J S L, SWEN J J, et al. Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors[J]. Pharmacogenomics J, 2019, 19(5): 473-479. |
36 | KOO D H, RYU M H, RYOO B Y, et al. Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor[J]. Cancer Chemother Pharmacol, 2015,75(1): 173-182. |
37 | ANGELINI S, PANTALEO M A, RAVEGNINI G, et al. Polymorphisms in OCTN1 and OCTN2 transporters genes are associated with prolonged time to progression in unresectable gastrointestinal stromal tumours treated with imatinib therapy[J]. Pharmacol Res, 2013, 68(1): 1-6. |
38 | VERBOOM M C, KLOTH J S L, SWEN J J, et al. Genetic polymorphisms in angiogenesis-related genes are associated with worse progression-free survival of patients with advanced gastrointestinal stromal tumours treated with imatinib[J]. Eur J Cancer, 2017, 86: 226-232. |
39 | BRAHMI M, ALBERTI L, DUFRESNE A, et al. KIT exon 10 variant (c.1621 A>C) single nucleotide polymorphism as predictor of GIST patient outcome[J]. BMC Cancer, 2015, 15(1): 1-8. |
40 | ANGELINI S, RAVEGNINI G, NANNINI M, et al. Folate-related polymorphisms in gastrointestinal stromal tumours: susceptibility and correlation with tumour characteristics and clinical outcome[J]. Eur J Hum Genet, 2015, 23(6): 817-823. |
41 | GEDDERT H, BRAUN A, KAYSER C, et al. Epigenetic regulation of CD133 in gastrointestinal stromal tumors[J]. Am J Clin Pathol, 2017, 147(5): 515-524. |
42 | HALLER F, ZHANG J D, MOSKALEV E A, et al. Combined DNA methylation and gene expression profiling in gastrointestinal stromal tumors reveals hypomethylation of SPP1 as an independent prognostic factor[J]. Int J Cancer, 2015, 136(5): 1013-1023. |
43 | NIINUMA T, KAI M, KITAJIMA H, et al. Downregulation of miR-186 is associated with metastatic recurrence of gastrointestinal stromal tumors[J]. Oncol Lett, 2017, 14(5): 5703-5710. |
44 | WANG Y, LI J, KUANG D, et al. miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT[J].Cell Commun Signal,2018,16(1): 16. |
45 | LONG Z W, WU J H, CAI-HONG, et al. MiR-374b promotes proliferation and inhibits apoptosis of human GIST cells by inhibiting PTEN through activation of the PI3K/Akt pathway[J].Mol Cells,2018,41(6): 532-544. |
46 | LIU X, QIU H, ZHANG P, et al. Ki-67 labeling index may be a promising indicator to identify “very high-risk” gastrointestinal stromal tumor: a multicenter retrospective study of 1022 patients[J]. Hum Pathol, 2018, 74: 17-24. |
47 | ZHAO W Y, XU J, WANG M, et al. Prognostic value of Ki67 index in gastrointestinal stromal tumors[J]. Int J Clin Exp Pathol, 2014, 7(5): 2298-2304. |
48 | MARTINHO O, GOUVEIA A, SILVA P, et al. Loss of RKIP expression is associated with poor survival in GISTs[J]. Virchows Arch, 2009, 455(3): 277-284. |
49 | WANG Y, CHEN J J, WANG X F, et al. Clinical and prognostic significance of Raf kinase inhibitory protein expression in gastrointestinal stromal tumors[J]. World J Gastroenterol, 2018, 24(23): 2508-2517. |
50 | WANG J L, WU J H, HONG C, et al. Involvement of Bmi-1 gene in the development of gastrointestinal stromal tumor by regulating p16Ink4A/p14ARF gene expressions: an in vivo and in vitro study[J]. Pathol Res Pract, 2017, 213(12): 1542-1551. |
51 | ZHU K, LI K, YUAN D W, et al. Clinicopathological and prognostic significance of expression of B-cell-specific moloney murine leukemia virus insertion site 1 (BMI-1) gene and protein in gastrointestinal stromal tumors[J]. Med Sci Monit, 2018, 24: 6414-6421. |
52 | RIZZO F M, PALMIROTTA R, MARZULLO A,et al.Parallelism of DOG1 expression with recurrence risk in gastrointestinal stromal tumors bearing KIT or PDGFRA mutations[J]. BMC Cancer, 2016, 16: 87. |
53 | LI Q, ZHI X, ZHOU J, et al. Circulating tumor cells as a prognostic and predictive marker in gastrointestinal stromal tumors: a prospective study[J]. Oncotarget, 2016, 7(24): 36645-36654. |
54 | JUNG S H, SUH K S, KANG D Y, et al. Expression of DOG1, PDGFRA, and p16 in gastrointestinal stromal tumors[J]. Gut Liver, 2011, 5(2): 171-180. |
[1] | 胡连涛,邓文俊,鹿士振,孙跞,李学斌,黎楚豪,王欣然,张春斌,李玥,王伟群. CC趋化因子配体20在肝细胞癌组织中的表达及其在肝细胞肝癌预后评估中作用的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(4): 1010-1017. |
[2] | 牛英杰,查勇,李思嘉,王青,唐诗聪,李红阳. 胆管癌根治性切除术后患者预后相关因素分析和生存预测模型构建[J]. 吉林大学学报(医学版), 2022, 48(4): 979-987. |
[3] | 刘迁,祁国萍,于华裔,戴宇阳,陆文斌,金建华. 结肠癌核心基因和独立预后因子筛选的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(3): 755-765. |
[4] | 高珊,王宇彤,陆敏秋,石磊,褚彬,丁月华,王梦真,鲍立. 新药时代多发性骨髓瘤患者早期死亡原因及其危险因素分析[J]. 吉林大学学报(医学版), 2022, 48(3): 783-789. |
[5] | 李承圣,包绮晗,郝晓燕,潘庆忠,王素珍,石福艳. 基于随机森林算法的胰腺癌术后预测模型构建[J]. 吉林大学学报(医学版), 2022, 48(2): 426-435. |
[6] | 赵莹,赵丹玉,刘超. 基于TXNDC11基因对泛癌的预后评估价值及其免疫调节作用的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(1): 142-153. |
[7] | 覃丽粒,马小波,赵天业,陶雪蓉,郑敏,王雪莹,易嘉欣,吴燕华,姜晶. MMP-9和TIMP-1表达在胃癌根治术后患者预后评估中的作用[J]. 吉林大学学报(医学版), 2022, 48(1): 163-171. |
[8] | 李书珍,曹雅杰,耿海营,蔡曾晓瑞,代春美,温有锋,李宁. 基于HMMR在肺腺癌组织中表达水平及其对LUAD患者预后影响的生物信息学分析[J]. 吉林大学学报(医学版), 2021, 47(6): 1502-1509. |
[9] | 李苇航,丁子毅,王栋,潘益凯,刘玉辉,张世磊,李靖,闫铭. 基于骨肉瘤核心驱动基因筛选的生物信息学分析和患者生存期预测基因模型的构建[J]. 吉林大学学报(医学版), 2021, 47(6): 1570-1580. |
[10] | 倪盟,曾雷. miRNA单核苷酸多态性与HBV感染相关疾病关系的研究进展[J]. 吉林大学学报(医学版), 2021, 47(6): 1588-1593. |
[11] | 于洋,刘赛男,刘云恺,李勇,乔乙春,程熠. PRPS2表达特点及其与乳腺癌预后关系的生物信息学分析[J]. 吉林大学学报(医学版), 2021, 47(5): 1229-1236. |
[12] | 文爱平,罗乐,孟志伟,金景姬,周洪贵,朱继红. Tip60蛋白在子宫内膜腺癌组织中的表达及其临床意义[J]. 吉林大学学报(医学版), 2021, 47(5): 1244-1249. |
[13] | 苏丹, 刘屹, 崔慢慢, 杨年, 黄宇, 何文静. 基于miniPDX动物模型筛选化疗方案治疗卵巢癌的临床效果评价[J]. 吉林大学学报(医学版), 2021, 47(3): 731-739. |
[14] | 周东奎, 鲁明骞, 林雅欣, 冯雪松, 高嫣, 宋浩. 胆囊小细胞癌伴肝脏和腹膜后淋巴结转移1例报告及文献复习[J]. 吉林大学学报(医学版), 2021, 47(3): 747-752. |
[15] | 郭飞, 朱林, 许红, 谢宗玉, 张莉, 邓雪飞. 新型冠状病毒肺炎患者胸部MSCT影像表现与预后的关联性分析[J]. 吉林大学学报(医学版), 2020, 46(04): 867-874. |
|