1 |
朱 帅, 张一英, 向 芳, 等. 脑卒中高危人群缺血性脑卒中3年发病影响因素COX回归分析[J]. 中国慢性病预防与控制, 2022, 30(2): 134-137.
|
2 |
张君琴, 张国新, 张振涛. 急性缺血性脑卒中后认知障碍的危险因素分析[J]. 中风与神经疾病杂志, 2021,38(1): 32-35.
|
3 |
周啸天, 骆亚莉, 李佳蔚, 等. 补阳还五汤防治缺血性脑卒中作用机制的研究现状[J]. 中国临床药理学杂志, 2022, 38(9):1011-1015
|
4 |
XIONG H, ZHANG A H, ZHAO Q Q, et al. Discovery of quality-marker ingredients of Panax quinquefolius driven by high-throughput chinmedomics approach[J]. Phytomedicine, 2020, 74: 152928.
|
5 |
LI L, WANG Y, XIU Y, et al. Chemical differentiation and quantitative analysis of different types of panax genus stem-leaf based on a UPLC-Q-exactive orbitrap/MS combined with multivariate statistical analysis approach[J].J Anal Methods Chem,2018,2018:9598672.
|
6 |
李 伟, 王 莹, 刘 伟. 人参、西洋参非药用部位开发与利用研究进展[J].吉林农业大学学报, 2021, 43(4): 383-392.
|
7 |
崔德深, 高镇生. 西洋参[M]. 北京: 科学出版社, 1984.
|
8 |
王爱华, 王丽丽, 刘英梅, 等. 西洋参茎叶总皂苷对大鼠局灶性脑缺血损伤及其炎症反应的影响[J]. 中南药学, 2019, 17(4): 522-526.
|
9 |
刘 松, 金梅香, 谭兴文. 西洋参茎叶皂苷保护大鼠脑缺血再灌注损伤的作用[J]. 中成药, 2016, 38(2): 418-421.
|
10 |
曲绍春, 于晓风, 刘 巍, 等. 西洋参茎叶20s-原人参二醇组皂苷对大鼠实验性脑缺血的影响[J]. 中国中药杂志, 2011, 36(12): 1675-1678.
|
11 |
LI J, LUO H H, WANG X F, et al. Exploring the active ingredients and mechanism of qianglidingxuan tablets for vertigo based on network pharmacology and molecular docking[J]. Inform Med Unlocked, 2022, 29: 100877.
|
12 |
HOPKINS A L. Network pharmacology[J]. Nat Biotechnol, 2007, 25(10): 1110-1111.
|
13 |
周昊言, 孙若岚, 季千惠, 等. 基于网络药理-分子对接解析川芎-赤芍药对干预脑缺血的作用机制[J]. 中国中药杂志, 2021, 46(12): 3007-3015.
|
14 |
LI F J, HATANO T, HATTORI N. Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson’s disease based on network pharmacology approach[J]. J Funct Foods, 2021, 87: 104764.
|
15 |
YU J W, WANG L, BAO L D. Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method[J]. J Funct Foods, 2020, 71: 104016.
|
16 |
DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res,2019,47(W1): W357-W364.
|
17 |
VON MERING C, HUYNEN M, JAEGGI D, et al. STRING: a database of predicted functional associations between proteins[J]. Nucleic Acids Res, 2003, 31(1): 258-261.
|
18 |
史大臻, 赖思含, 刘俊彤, 等. UPLC-Q/TOF-MS结合UNIFI库快速分析西洋参茎叶三醇皂苷[J]. 特产研究, 2021, 43(4)72-81
|
19 |
YU Z Y, WU Y L, MA Y J, et al. Systematic analysis of the mechanism of aged citrus peel (Chenpi) in oral squamous cell carcinoma treatment via network pharmacology, molecular docking and experimental validation[J]. J Funct Foods, 2022, 91: 105012.
|
20 |
曹 姗, 宋文婷, 徐 立, 等. 缺血性脑卒中的氧化/亚硝化应激和神经炎症反应与中西药治疗研究进展[J]. 世界科学技术-中医药现代化, 2021, 23(12):4647-4653
|
21 |
LI J H, CHEN Z X, ZHANG X G, et al. Bioactive components of Chinese herbal medicine enhance endogenous neurogenesis in animal models of ischemic stroke: a systematic analysis[J]. Medicine (Baltimore), 2016, 95(40): e4904.
|
22 |
YI J H, PARK S W, KAPADIA R, et al. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage[J]. Neurochem Int, 2007, 50(7/8): 1014-1027.
|
23 |
方舒东, 朱也森, 姜 虹, 等. 大鼠短暂性全脑缺血后STAT3表达与神经元凋亡的关系[J]. 上海交通大学学报(医学版), 2007, 27(2): 193-196.
|
24 |
YU L, LIU Z L, HE W D, et al. Hydroxysafflor yellow A confers neuroprotection from focal cerebral ischemia by modulating the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways[J]. Cell Mol Neurobiol, 2020, 40(8): 1271-1281.
|
25 |
LI L, SUN L L, QIU Y, et al. Protective effect of stachydrine against cerebral ischemia-reperfusion injury by reducing inflammation and apoptosis through P65 and JAK2/STAT3 signaling pathway[J]. Front Pharmacol, 2020, 11: 64.
|
26 |
ZHU H, JIAN Z H, ZHONG Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol, 2021, 12: 714943.
|
27 |
吕明义, 邓淑玲, 郭文晏, 等. 木犀草素抑制JAK2/STAT3信号通路减轻大鼠脑缺血再灌注损伤作用的研究[J]. 天津医药, 2022, 50(4): 363-368.
|
28 |
龚翠兰, 杨仁义, 周德生, 等. 基于miR-370-3p与JAK2/STAT3通路相关性探讨活血荣络方促缺血性脑卒中后血管新生的机制[J]. 中国药理学通报, 2022, 38(2): 297- 304.
|
29 |
CHEN D D, WEI L, LIU Z R, et al. Correction to: pyruvate kinase M2 increases angiogenesis, neurogenesis, and functional recovery mediated by upregulation of STAT3 and focal adhesion kinase activities after ischemic stroke in adult mice[J]. Neurotherapeutics, 2018, 15(3): 836.
|
30 |
李 月. 基于JAK2/STAT3信号通路探讨复方当归注射液对缺血性脑卒中炎性反应的作用机制[D]. 北京: 北京中医药大学,2020.
|
31 |
SAMAKOVA A, GAZOVA A, SABOVA N, et al. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia[J]. Physiol Res, 2019, 68(): S131-S138.
|
32 |
ZHAO E Y, EFENDIZADE A, CAI L P, et al. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury[J].Neurol Res,2016,38(4): 301-308.
|
33 |
张建云, 李婧雯, 张丽红, 等. PI3K/Akt信号通路与缺血性脑卒中的关系及中药干预的研究进展[J]. 中国实验方剂学杂志, 2022, 28(22): 265-275.
|
34 |
CHEN J M, ZHANG X J, LIU X X, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice[J]. Eur J Pharmacol, 2019, 856: 172418.
|
35 |
YUAN L L, SUN S B, PAN X H, et al. Pseudoginsenoside-F11 improves long-term neurological function and promotes neurogenesis after transient cerebral ischemia in mice[J]. Neurochem Int, 2020, 133: 104586.
|