1 |
BIERNACKA A, DOBACZEWSKI M, FRANGOGIANNIS N G. TGF-β signaling in fibrosis[J]. Growth Factors, 2011, 29(5): 196-202.
|
2 |
LODYGA M, HINZ B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity[J]. Semin Cell Dev Biol, 2020, 101: 123-139.
|
3 |
COLETTA R D, GRANER E. Hereditary gingival fibromatosis: a systematic review[J]. J Periodontol, 2006, 77(5): 753-764.
|
4 |
FU M M, CHIN Y T, FU E, et al. Role of transforming growth factor-beta1 in cyclosporine-induced epithelial-to-mesenchymal transition in gingival epithelium[J]. J Periodontol, 2015, 86(1): 120-128.
|
5 |
SHIH Y H, WANG T H, SHIEH T M, et al. Oral submucous fibrosis:a review on etiopathogenesis, diagnosis,and therapy[J].Int J Mol Sci, 2019,20(12):2940.
|
6 |
HU H H, CHEN D Q, WANG Y N, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
|
7 |
侯梅娟, 赵 斌, 林崇韬. 遗传性牙龈纤维瘤病发病机制研究进展[J]. 口腔医学研究, 2012, 28(1): 90-92.
|
8 |
MORIKAWA M, DERYNCK R, MIYAZONO K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873.
|
9 |
MURPHY-ULLRICH J E, SUTO M J. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease[J]. Matrix Biol, 2018, 68/69: 28-43.
|
10 |
BUDI E H, SCHAUB J R, DECARIS M, et al.TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities[J]. J Pathol, 2021, 254(4): 358-373.
|
11 |
FRANGOGIANNIS N. Transforming growth factor-β in tissue fibrosis[J].J Exp Med,2020,217(3):e20190103.
|
12 |
DERYNCK R, BUDI E H. Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570): eaav5183.
|
13 |
ROBERTS A B, SPORN M B, ASSOIAN R K, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro [J].Proc Natl Acad Sci U S A, 1986, 83(12): 4167-4171.
|
14 |
WRIGHT H J, CHAPPLE I L, MATTHEWS J B. TGF-beta isoforms and TGF-beta receptors in drug-induced and hereditary gingival overgrowth[J]. J Oral Pathol Med, 2001, 30(5): 281-289.
|
15 |
PITIYAGE G N, LIM K P, GEMENITZIDIS E,et al. Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 (TIMPs-1 and-2) in fibroblasts are early indicators of oral sub-mucous fibrosis and ageing[J].J Oral Pathol Med,2012,41(6): 454-462.
|
16 |
HART T C, ZHANG Y Z, GORRY M C, et al. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1[J]. Am J Hum Genet, 2002,70(4): 943-954.
|
17 |
HÄKKINEN L, CSISZAR A. Hereditary gingival fibromatosis: characteristics and novel putative pathogenic mechanisms[J]. J Dent Res, 2007, 86(1): 25-34.
|
18 |
TIPTON D A, DABBOUS M K. Autocrine transforming growth factor beta stimulation of extracellular matrix production by fibroblasts from fibrotic human gingiva[J]. J Periodontol, 1998, 69(6): 609-619.
|
19 |
GAO Q, YANG C C, MENG L Y, et al. Activated KCNQ1 channel promotes fibrogenic response in hereditary gingival fibromatosis via clustering and activation of Ras[J].J Periodontal Res,2021,56(3):471-481.
|
20 |
MARTELLI-JUNIOR H, COTRIM P, GRANER E, et al. Effect of transforming growth factor-beta1, interleukin-6, and interferon-gamma on the expression of type I collagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis[J]. J Periodontol, 2003, 74(3): 296-306.
|
21 |
GAWRON K, OCHAŁA-KŁOS A, NOWAKOWSKA Z, et al. TIMP-1 association with collagen type I overproduction in hereditary gingival fibromatosis[J]. Oral Dis, 2018, 24(8): 1581-1590.
|
22 |
SELVARAJAH B, AZUELOS I, PLATÉ M, et al. mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β1-induced collagen biosynthesis[J]. Sci Signal, 2019, 12(582): eaav3048.
|
23 |
BITU C C, SOBRAL L M, KELLERMANN M G,et al.Heterogeneous presence of myofibroblasts in hereditary gingival fibromatosis[J].J Clin Periodontol,2006,33(6): 393-400.
|
24 |
SMITH P C, CÁCERES M, MARTINEZ J. Induction of the myofibroblastic phenotype in human gingival fibroblasts by transforming growth factor-beta1: role of RhoA-ROCK and c-Jun N-terminal kinase signaling pathways[J]. J Periodontal Res, 2006, 41(5): 418-425.
|
25 |
SOBRAL L M, MONTAN P F, MARTELLI-JUNIOR H, et al. Opposite effects of TGF-beta1 and IFN-gamma on transdifferentiation of myofibroblast in human gingival cell cultures[J]. J Clin Periodontol, 2007, 34(5): 397-406.
|
26 |
SOBRAL L M, MONTAN P F, ZECCHIN K G,et al. Smad7 blocks transforming growth factor-β1-induced gingival fibroblast-myofibroblast transition via inhibitory regulation of Smad2 and connective tissue growth factor[J]. J Periodontol, 2011, 82(4): 642-651.
|
27 |
LEIVONEN S K, HÄKKINEN L, LIU D, et al. Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transforming growth factor-beta-induced expression of connective tissue growth factor in human fibroblasts[J]. J Invest Dermatol, 2005,124(6): 1162-1169.
|
28 |
BLACK S A Jr, TRACKMAN P C. Transforming growth factor-beta1 (TGFbeta1) stimulates connective tissue growth factor (CCN2/CTGF) expression in human gingival fibroblasts through a RhoA-independent, Rac1/Cdc42-dependent mechanism: statins with forskolin block TGFbeta1-induced CCN2/CTGF expression[J].J Biol Chem, 2008,283(16):10835-10847.
|
29 |
VESCARELLI E, PILLONI A, DOMINICI F, et al. Autophagy activation is required for myofibroblast differentiation during healing of oral mucosa[J]. J Clin Periodontol, 2017, 44(10): 1039-1050.
|
30 |
DE ANDRADE C R, COTRIN P, GRANER E, et al. Transforming growth factor-beta1 autocrine stimulation regulates fibroblast proliferation in hereditary gingival fibromatosis[J].J Periodontol, 2001,72(12):1726-1733.
|
31 |
JOHNSON B D, EL-GUINDY M, AMMONS W F, et al. A defect in fibroblasts from an unidentified syndrome with gingival hyperplasia as the predominant feature[J]. J Periodontal Res, 1986, 21(4): 403-413.
|
32 |
HASSELL T M, ROEBUCK S, PAGE R C, et al. Quantitative histopathologic assessment of developing phenytoin-induced gingival overgrowth in the cat[J]. J Clin Periodontol, 1982, 9(5): 365-372.
|
33 |
SUBRAMANI T, RATHNAVELU V, ALITHEEN N B. The possible potential therapeutic targets for drug induced gingival overgrowth[J]. Mediators Inflamm, 2013, 2013: 639468.
|
34 |
COTRIM P, DE ANDRADE C R, MARTELLI-JUNIOR H, et al. Expression of matrix metalloproteinases in cyclosporin-treated gingival fibroblasts is regulated by transforming growth factor (TGF)-beta1 autocrine stimulation[J]. J Periodontol, 2002, 73(11): 1313-1322.
|
35 |
CHIN Y T, TU H P, LIN C Y, et al. Antioxidants protect against gingival overgrowth induced by cyclosporine A[J].J Periodontal Res, 2021,56(2):397-407.
|
36 |
UZEL M I, KANTARCI A, HONG H H, et al. Connective tissue growth factor in drug-induced gingival overgrowth[J]. J Periodontol, 2001, 72(7): 921-931.
|
37 |
KANTARCI A, BLACK S A, XYDAS C E, et al. Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis[J].J Pathol,2006,210(1): 59-66.
|
38 |
TRACKMAN P C, KANTARCI A. Molecular and clinical aspects of drug-induced gingival overgrowth[J]. J Dent Res, 2015, 94(4): 540-546.
|
39 |
KANTARCI A, AUGUSTIN P, FIRATLI E, et al. Apoptosis in gingival overgrowth tissues[J]. J Dent Res, 2007, 86(9): 888-892.
|
40 |
KANTARCI A, NSEIR Z, KIM Y S, et al. Loss of basement membrane integrity in human gingival overgrowth[J]. J Dent Res, 2011, 90(7): 887-893.
|
41 |
SUME S S, BERKER E, ILARSLAN Y, et al. Elevated interleukin-17A expression in amlodipine-induced gingival overgrowth[J]. J Periodontal Res, 2020, 55(5): 613-621.
|
42 |
SUBRAMANI T, RATHNAVELU V, YEAP S K, et al. Influence of mast cells in drug-induced gingival overgrowth[J]. Mediators Inflamm, 2013, 2013: 275172.
|
43 |
ARTUC M, STECKELINGS U M, HENZ B M. Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors[J]. J Invest Dermatol, 2002, 118(3): 391-395.
|
44 |
MARTIN M M, BUCKENBERGER J A, JIANG J M, et al. TGF-beta1 stimulates human AT1 receptor expression in lung fibroblasts by cross talk between the Smad, p38 MAPK, JNK, and PI3K signaling pathways[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3): L790-L799.
|
45 |
SHEN Y W, SHIH Y H, FUH L J, et al. Oral submucous fibrosis: a review on biomarkers, pathogenic mechanisms,and treatments[J].Int J Mol Sci,2020,21(19): 7231.
|
46 |
KHAN I, KUMAR N, PANT I, et al. Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis[J]. PLoS One, 2012, 7(12): e51806.
|
47 |
MOUTASIM K A, JENEI V, SAPIENZA K, et al. Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis[J]. J Pathol,2011,223(3): 366-377.
|
48 |
HSIEH Y P, WU K J, CHEN H M, et al. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: suppression by epigallocatechin-3-gallate[J]. J Formos Med Assoc, 2018, 117(6): 527-534.
|
49 |
CHANG J Z, YANG W H, DENG Y T, et al. EGCG blocks TGFβ1-induced CCN2 by suppressing JNK and p38 in buccal fibroblasts[J].Clin Oral Investig, 2013, 17(2): 455-461.
|
50 |
PANT I, KUMAR N, KHAN I, et al. Role of areca nut induced TGF-β and epithelial-mesenchymal interaction in the pathogenesis of oral submucous fibrosis[J]. PLoS One, 2015, 10(6): e0129252.
|