1 |
MOORE B, PEREZ V. Specific proteins of the nervous system [J]. Physiological and Biochemical Aspects of Nervous Integration, 1967, 343-359
|
2 |
SEHNKE P C, ROSENQUIST M, ALSTERFJORD M, et al. Evolution and isoform specificity of plant 14-3-3 proteins[J]. Plant Mol Biol, 2002, 50(6): 1011-1018.
|
3 |
JAUBERT S, LAFFAIRE J B, LEDGER T N, et al. Comparative analysis of two 14-3-3 homologues and their expression pattern in the root-knot nematode Meloidogyne incognita[J]. Int J Parasitol, 2004, 34(7): 873-880.
|
4 |
CAU Y, VALENSIN D, MORI M, et al. Structure, function, involvement in diseases and targeting of 14-3-3 proteins: an update[J]. Curr Med Chem, 2018, 25(1): 5-21.
|
5 |
LUK S C, GARCIA-BARCELO M, TSUI S K, et al. Assignment of the human 14-3-3 epsilon isoform (YWHAE) to human chromosome 17p13 by in situ hybridization[J]. Cytogenet Cell Genet, 1997, 78(2): 105-106.
|
6 |
WANG W, SHAKES D C. Molecular evolution of the 14-3-3 protein family[J]. J Mol Evol, 1996, 43(4): 384-398.
|
7 |
WU C Y, JAN Y J, KO B S, et al. Prognostic significance of 14-3-3ε, aldo-keto reductase family 1 B10 and metallothionein-1 in hepatocellular carcinoma[J]. Anticancer Res, 2018, 38(12): 6855-6863.
|
8 |
AL-MATOUQ J, HOLMES T, HAMMILLER B,et al.Accumulation of cytoplasmic CDC25A in cutaneous squamous cell carcinoma leads to a dependency on CDC25A for cancer cell survival and tumor growth[J]. Cancer Lett, 2017, 410: 41-49.
|
9 |
ZHAO Y L, FANG X, FANG H, et al. ATPR-induced G0/G1 phase arrest in gastric cancer cells by regulating the binding of 14-3-3ε and filamin A[J]. Cancer Med, 2018, 7(7): 3373-3384.
|
10 |
SLUCHANKO N N, GUSEV N B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins[J]. FEBS J, 2017, 284(9): 1279-1295.
|
11 |
GU Y M, JIN Y H, CHOI J K, et al. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon[J]. FEBS Lett, 2006, 580(1): 305-310.
|
12 |
SLUCHANKO N N, BUSTOS D M. Intrinsic disorder associated with 14-3-3 proteins and their partners[J]. Prog Mol Biol Transl Sci, 2019, 166: 19-61.
|
13 |
RITTINGER K, BUDMAN J, XU J, et al. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding[J]. Mol Cell, 1999, 4(2): 153-166.
|
14 |
YAFFE M B, RITTINGER K, VOLINIA S, et al. The structural basis for 14-3-3: phosphopeptide binding specificity[J]. Cell, 1997, 91(7): 961-971.
|
15 |
BRIDGES D, MOORHEAD G B G. 14-3-3 proteins: a number of functions for a numbered protein[J]. Sci STKE, 2005, 2005(296): re10.
|
16 |
OBSIL T, OBSILOVA V. Structural basis of 14-3-3 protein functions[J]. Semin Cell Dev Biol,2011,22(7): 663-672.
|
17 |
LOPEZ-GIRONA A, FURNARI B, MONDESERT O,et al. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein[J].Nature,1999,397(6715): 172-175.
|
18 |
BRUNET A, KANAI F, STEHN J, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport[J].J Cell Biol,2002,156(5): 817-828.
|
19 |
ZIEGLER P, TELLER S, HA N H, et al. Phosphoproteomic identification of a PDX-1/14-3-3ε interaction in pancreatic beta cells[J]. Horm Metab Res, 2011, 43(3): 165-170.
|
20 |
WACHI T, CORNELL B, TOYO-OKA K. Complete ablation of the 14-3-3epsilon protein results in multiple defects in neuropsychiatric behaviors[J]. Behav Brain Res, 2017, 319: 31-36.
|
21 |
TADESSE S, ANSHABO A T, PORTMAN N,et al. Targeting CDK2 in cancer: challenges and opportunities for therapy[J].Drug Discov Today,2020,25(2):406-413.
|
22 |
GONG X X, YAN L, GU H, et al. 14-3-3ε functions as an oncogene in SGC7901 gastric cancer cells through involvement of cyclin E and p27kip1[J]. Mol Med Rep, 2014, 10(6): 3145-3150.
|
23 |
ZHANG X, ZENG B, WEN C, et al. YWHAE is a novel interaction partner of Helicobacter pylori CagA[J]. FEMS Microbiol Lett, 2018, 365(2). DOI: 10.1093/femsle/fnx231 .
doi: 10.1093/femsle/fnx231
|
24 |
YAN L, GU H, LI J, et al. RKIP and 14-3-3ε exert an opposite effect on human gastric cancer cells SGC7901 by regulating the ERK/MAPK pathway differently[J]. Dig Dis Sci, 2013, 58(2): 389-396.
|
25 |
XIA Q, ZHAO Y L, WANG J L, et al. Proteomic analysis of cell cycle arrest and differentiation induction caused by ATPR, a derivative of all-trans retinoic acid, in human gastric cancer SGC-7901 cells[J]. Proteomics Clin Appl,2017,11(7/8).DOI:10.1002/prca.201600099 .
doi: 10.1002/prca.201600099
|
26 |
LEAL M F, RIBEIRO H F, REY J A, et al. YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process[J]. Oncotarget, 2016, 7(51): 85393-85410.
|
27 |
国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 肿瘤综合治疗电子杂志, 2022, 8(2): 16-53.
|
28 |
LIU T A, JAN Y J, KO B S, et al. 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma[J]. PLoS One, 2013, 8(3): e57968.
|
29 |
LIU T A, JAN Y J, KO B S, et al. Correction: regulation of Aldo-keto-reductase family 1 B10 by 14-3-3ε and their prognostic impact of hepatocellular carcinoma[J]. Oncotarget, 2018, 9(79): 35026.
|
30 |
WU Y J, KO B S, LIANG S M, et al. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(6): 408.
|
31 |
KOHAMA Y, SAITO M, YADA M, et al. Regulation of the stability and activity of CDC25A and CDC25B by protein phosphatase PP2A and 14-3-3 binding[J]. Cell Signal, 2019, 54: 10-16.
|
32 |
HOLMES T R, AL-MATOUQ J, HOLMES M, et al. Targeting 14-3-3ε-CDC25A interactions to trigger apoptotic cell death in skin cancer[J]. Oncotarget, 2020, 11(35): 3267-3278.
|
33 |
HOLMES T R, MATOUQ JAL, HOLMES M, et al. Targeting 14-3-3ε activates apoptotic signaling to prevent cutaneous squamous cell carcinoma[J]. Carcinogenesis, 2021, 42(2): 232-242.
|
34 |
AL-MATOUQ J, HOLMES T R, HANSEN L A. CDC25B and CDC25C overexpression in nonmelanoma skin cancer suppresses cell death[J]. Mol Carcinog, 2019, 58(9): 1691-1700.
|
35 |
ZHA J, HARADA H, YANG E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)[J]. Cell, 1996, 87(4): 619-628.
|
36 |
NOMURA M, SHIMIZU S, SUGIYAMA T, et al. 14-3-3 interacts directly with and negatively regulates pro-apoptotic Bax[J]. J Biol Chem, 2015, 290(11): 6753.
|
37 |
ZHAO J F, XU H Q, DUAN Z Q, et al. miR-31-5p regulates 14-3-3 ɛ to inhibit prostate cancer 22RV1 cell survival and proliferation via PI3K/AKT/bcl-2 signaling pathway[J]. Cancer Manag Res, 2020, 12: 6679-6694.
|
38 |
ANGELES A K, HECKMANN D, FLOSDORF N, et al. The ERG-regulated LINC00920 promotes prostate cancer cell survival via the 14-3-3ε-FOXO pathway[J]. Mol Cancer Res, 2020, 18(10): 1545-1559.
|
39 |
LI X, WANG C X, WANG S, et al. YWHAE as an HE4 interacting protein can influence the malignant behaviour of ovarian cancer by regulating the PI3K/AKT and MAPK pathways[J].Cancer Cell Int,2021,21(1): 302.
|
40 |
LU K, RUI G, LIU F, et al. 14-3-3ε is a nuclear matrix protein, and its altered expression and localization are associated with curcumin-induced apoptosis of MG-63 cells[J]. Oncol Lett, 2018, 15(1): 338-346.
|
41 |
YANG Y, SANG Z Y, MA J, et al. KRAS, YWHAE, SP1 and MSRA as biomarkers in endometrial cancer[J]. Transl Cancer Res, 2021, 10(3): 1295-1312.
|
42 |
ZHONG Z M, CHEN X, QI X, et al. Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding[J]. Cancer Cell Int, 2020, 20: 11.
|
43 |
XU Y, FULCINITI M, SAMUR M K, et al. YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma[J]. Blood, 2020, 136(4): 468-479.
|
44 |
YAO W J, TONG S, TAN J, et al. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein[J]. Arch Biochem Biophys, 2019, 663: 101-108.
|
45 |
WOODCOCK J M, COOLEN C, GOODWIN K L,et al.Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics[J]. Oncotarget, 2015, 6(16): 14522-14536.
|
46 |
JIN M, WU L N, CHEN S, et al. Arsenic trioxide enhances the chemotherapeutic efficiency of cisplatin in cholangiocarcinoma cells via inhibiting the 14-3-3ε- mediated survival mechanism[J]. Cell Death Discov, 2020, 6(1): 92.
|