吉林大学学报(医学版) ›› 2023, Vol. 49 ›› Issue (5): 1243-1252.doi: 10.13481/j.1671-587X.20230518

• 临床研究 • 上一篇    

乙型肝炎病毒相关肝细胞癌关键基因筛选及其与预后关系的生物信息学分析

徐雅琪,王艳玉,张文婧,韩梅,穆华夏,杨希,卜伟晓,陶子琨,孔雨佳,石福艳(),王素珍()   

  1. 潍坊医学院公共卫生学院卫生统计学教研室,山东 潍坊 261053
  • 收稿日期:2022-11-24 出版日期:2023-09-28 发布日期:2023-10-26
  • 通讯作者: 石福艳,王素珍 E-mail:shifuyan@126.com;wangsz@wfmc.edu.cn
  • 作者简介:徐雅琪(1997-),女,湖北省武汉市人,在读硕士研究生,主要从事健康测量和健康统计方面的研究。
  • 基金资助:
    国家自然科学基金项目(81803337);国家统计局科研项目(2018LY79);山东省科技厅自然科学基金项目(ZR2019MH034);山东省教育厅高等学校青创人才引育计划项目(2019-6-156);潍坊医学院博士启动基金项目(2017BSQD51)

Bioinformatics analysis on screening of key genes of hepatitis B virus-related hepatocellular carcinoma and its relationship with prognosis

Yaqi XU,Yanyu WANG,Wenjing ZHANG,Mei HAN,Huaxia MU,Xi YANG,Weixiao BU,Zikun TAO,Yujia KONG,Fuyan SHI(),Suzhen WANG()   

  1. Department of Health Statistics,School of Public Health,Weifang Medical University,Weifang 261053,China
  • Received:2022-11-24 Online:2023-09-28 Published:2023-10-26
  • Contact: Fuyan SHI,Suzhen WANG E-mail:shifuyan@126.com;wangsz@wfmc.edu.cn

摘要:

目的 采用生物信息学方法识别与乙型肝炎病毒相关肝细胞癌(HBV-HCC)的早期诊断和不良预后相关的关键基因,阐明HBV-HCC 发生发展的潜在分子机制。 方法 从基因表达综合数据库(GEO)中检索“hepatitis B induced HCC ”,下载基因数据集GSE121248,通过R软件中的“limma”数据包筛选差异表达基因(DEGs),采用“clusterProfiler” 数据包对DEGs进行基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)信号通路富集分析,采用STRING数据库和Cytoscape软件建立蛋白-蛋白互作(PPI)网络并筛选关键基因。采用基因表达水平值的交互式分析(GEPIA)、Kaplan Meier-Plotter和人类蛋白质图谱(HPA)数据库验证关键基因及其蛋白质表达水平,采用“CIBERSORT”数据包分析免疫细胞的浸润情况。 结果 共筛选出574个DEGs,其中上调基因173个,下调基因401个。GO功能富集分析,DEGs主要富集于小分子代谢、信号转导、免疫应答和炎症反应等生物学过程;KEGG通路富集分析,DEGs主要富集于视黄醇代谢、细胞色素P450对外源药物代谢通路和化学致癌作用等。筛选PPI网络中的细胞分裂周期20(CDC20)、细胞周期蛋白依赖性激酶1(CDK1)、细胞周期蛋白A2(CCNA2)、纺锤体检测点蛋白(BUB1B)、拓扑异构酶Ⅱα(TOP2A)、Discs大同源相关蛋白5(DLGAP5)、异常纺锤体样小头畸形相关蛋白(ASPM)、中心体蛋白55(CEP55)、驱动蛋白超家族11(KIF11)和驱动蛋白超家族20A(KIF20A)为HBV-HCC的关键基因。GEPIA数据库分析,上述10种关键基因在HCC患者中均呈高表达。Kaplan-Meier生存曲线分析,关键基因高表达的HCC患者总生存期短于低表达患者。 结论 细胞周期与病毒致癌作用相关基因(CDC20、CDK1、CCNA2和BUB1B)与HBV-HCC患者的发生发展及不良预后有密切关联,可能成为诊断标志物和治疗新靶点。

关键词: 肝细胞肿瘤, 乙型肝炎病毒, 生物信息学, 免疫浸润, 预后

Abstract:

Objective To identify the key genes associated with the early diagnosis and poor prognosis of hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) by using the bioinformatics methods, and to elucidate the underlying molecular mechanism of occurence and development of HBV-HCC. Methods Gene Expression Omnibus (GEO) Database was used to retrieval “hepatitis B induced HCC”; the Gene Dataset GSE121248 was downloaded, the differentially expressed genes (DEGs) were screened by the “limma” Data Package in R Software, and the DEGs were enriched by using the “clusterProfiler” Data Package for Gene Ontology (GO) functional analysis and the Kyoto Genes and Genome Encyclopedia (KEGG) signaling pathway enrichment analysis; STRING Database and Cytoscape Software were used to establish the protein-protein interaction(PPI) network and the key genes were screened out.Gene Expression Profiling Interactive Analysis(GEPIA), Kaplan Meier-Plotter,and Human Protein Atlas(HPA)Databases were used to verify the key genes and the expression levels of proteins;the infiltration of the immune cells was analyzed based on the “CIBERSORT” Data Package. Results A total of 574 DEGs were identified,including 173 up-regulated genes and 401 down-regulated genes. The GO functional enrichment analysis results showed that DEGs were mainly enriched in the biological processes such as small molecule metabolism, signal transduction, immune response, inflammatory response,and so on; the KEGG signaling pathway enrichment analysis results showed that the DEGs were mainly enriched in retinol metabolism, cytochrome P450 metabolic pathway of exogenous drugs, and chemical carcinogenesis,and so on. The PPI network results showed that cell division cycle 20(CDC20),cyclin dependent kinase 1(CDK1), cyclin A2(CCNA2), pindle checkpoint protein(BUB1B), topoisomerase Ⅱ α(TOP2A), discs large homolog associated related protein 5(DLGAP5), abnormal spindle-like microcephaly associated protein(ASPM), centrosomal protein 55(CEP55), kinesin superfamily 11(KIF11),and kinesin superfamily 20A(KIF20A) were the key genes. The GEPIA Database analysis results showed that these above 10 key genes were highly expressed in the HCC patients. The Kaplan Meier survival curve showed that the overall survivals of the HCC patients with high expression of key genes were shorter than those of the HCC patients with low expression of key genes. Conclusion The genes related to cell cycle and viral oncogenesis (CDC20, CDK1, CCNA2, and BUB1B) are closely associated with the occurence and development and poor prognosis of the HBV-HCC patients, which may become the diagnostic markers and new targets for the treatment.

Key words: Hepatocellular carcinoma, Hepatitis B virus, Bioinformatics, Immune infiltration, Prognosis

中图分类号: 

  • R735.7