1 |
ISHII H, KANEKO S, YANAI K, et al. microRNAs in podocyte injury in diabetic nephropathy[J]. Front Genet, 2020, 11: 993.
|
2 |
MIZUNO T, HAYASHI T, KATO R, et al. Risk factors for an early dialysis start in patients with diabetic nephropathy end-stage renal disease[J]. Ther Clin Risk Manag, 2014, 10: 73-76.
|
3 |
CHENG Y, WANG D D, WANG F, et al. Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes[J]. J Am Soc Nephrol, 2020, 31(7): 1539-1554.
|
4 |
曹 聃, 孙雪峰. microRNA在肾组织纤维化中的研究进展[J]. 中国实用内科杂志, 2017, 37(3): 262-266.
|
5 |
GREGORY R I, YAN K P, AMUTHAN G, et al. The Microprocessor complex mediates the genesis of microRNAs[J]. Nature, 2004, 432(7014): 235-240.
|
6 |
DU T T, ZAMORE P D. microPrimer: the biogenesis and function of microRNA[J]. Development, 2005, 132(21): 4645-4652.
|
7 |
FILIPOWICZ W. RNAi: the nuts and bolts of the RISC machine[J]. Cell, 2005, 122(1): 17-20.
|
8 |
KRAVETS I, MALLIPATTU S K. The role of podocytes and podocyte-associated biomarkers in diagnosis and treatment of diabetic kidney disease[J]. J Endocr Soc, 2020, 4(4): bvaa029.
|
9 |
HARALDSSON B, NYSTRÖM J, DEEN W M. Properties of the glomerular barrier and mechanisms of proteinuria[J]. Physiol Rev, 2008, 88(2): 451-487.
|
10 |
PERICO L, CONTI S, BENIGNI A, et al. Podocyte-actin dynamics in health and disease[J]. Nat Rev Nephrol, 2016, 12(11): 692-710.
|
11 |
胡晓青, 于慧美, 沈璐妍, 等. PI3K/AKT/mTOR信号通路与线粒体稳态在疾病治疗中的作用[J]. 中国病理生理杂志, 2021, 37(11): 2072-2076.
|
12 |
郭亚男, 赵瑞红, 刘 青. 自噬与糖尿病肾病关系的研究进展[J].吉林大学学报(医学版),2013,39(4):855-858.
|
13 |
TEH Y M, MUALIF S A, LIM S K. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury[J]. Int J Biochem Cell Biol, 2022, 143: 106153.
|
14 |
YANG F, QU Q S, ZHAO C Y, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice[J]. Biomed Pharmacother, 2020, 129: 110479.
|
15 |
XU T, SUN D J, CHEN Y, et al. Targeting mTOR for fighting diseases: a revisited review of mTOR inhibitors[J]. Eur J Med Chem, 2020, 199: 112391.
|
16 |
WANG M, CHEN D Q, WANG M C, et al. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway[J]. Phytomedicine, 2017, 36: 243-253.
|
17 |
CHEN L, YANG T, LU D W, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment[J]. Biomedecine Pharmacother, 2018, 101: 670-681.
|
18 |
REN L Y, WAN R R, CHEN Z, et al. Triptolide alleviates podocyte epithelial-mesenchymal transition via kindlin-2 and EMT-related TGF-β/smad signaling pathway in diabetic kidney disease[J]. Appl Biochem Biotechnol, 2022, 194(2): 1000-1012.
|
19 |
BEATON H, ANDREWS D, PARSONS M, et al. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis[J]. Am J Physiol Renal Physiol, 2016, 311(1): F35-F45.
|
20 |
WAN J, HOU X Y, ZHOU Z M, et al. WT1 ameliorates podocyte injury via repression of EZH2/ β-catenin pathway in diabetic nephropathy[J]. Free Radic Biol Med, 2017, 108: 280-299.
|
21 |
XIE L, ZHAI R N, CHEN T, et al. Panax notoginseng ameliorates podocyte EMT by targeting the Wnt/ β-catenin signaling pathway in STZ-induced diabetic rats[J]. Drug Des Devel Ther, 2020, 14: 527-538.
|
22 |
FU Y Q, WANG C X, ZHANG D M, et al. miR-15b-5p ameliorated high glucose-induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A[J]. J Cell Physiol, 2019, 234(11): 20869-20878.
|
23 |
陈朝琴, 薛治乾, 李文霞. miR-15b-5p靶向SGK1对高糖诱导小鼠足细胞损伤的影响[J]. 中国老年学杂志, 2021, 41(9): 1913-1918.
|
24 |
ZHAO T T, JIN Q S, KONG L L, et al. microRNA-15b-5p shuttled by mesenchymal stem cell-derived extracellular vesicles protects podocytes from diabetic nephropathy via downregulation of VEGF/PDK4 axis[J]. J Bioenerg Biomembr, 2022, 54(1): 17-30.
|
25 |
DUAN Y R, CHEN B P, CHEN F, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte[J]. J Cell Mol Med, 2021, 25(23): 10798-10813.
|
26 |
LIU Y S, LI H Z, LIU J T, et al. Variations in microRNA-25 expression influence the severity of diabetic kidney disease[J].J Am Soc Nephrol,2017,28(12): 3627-3638.
|
27 |
ZHAO B H, LI H Z, LIU J T, et al. microRNA-23b targets ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy[J].J Am Soc Nephrol,2016,27(9): 2597-2608.
|
28 |
朱 妤, 王晶晶, 吴 芳. miR-150-5p在糖尿病肾病模型小鼠肾组织中的表达和对小鼠足细胞MPC5损伤的影响及其机制[J].吉林大学学报(医学版),2022,48(1): 44-51.
|
29 |
CHEN J F, XU Q, ZHANG W, et al. miR-203-3p inhibits the oxidative stress, inflammatory responses and apoptosis of mice podocytes induced by high glucose through regulating Sema3A expression[J]. Open Life Sci, 2020, 15(1): 939-950.
|
30 |
JIN J, WANG Y G, ZHAO L, et al. Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial-mesenchymal transition of podocytes by inhibiting ZEB2 [J]. Biomed Res Int, 2020, 2020: 2685305.
|
31 |
XU Y X, ZHANG J Z, FAN L, et al. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4[J]. Biochem Biophys Res Commun, 2018, 505(2): 339-345.
|
32 |
YAO T, ZHA D Q, GAO P, et al. miR-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4[J]. J Cell Physiol, 2018, 234(1): 871-879.
|
33 |
ZHOU Z M, WAN J, HOU X Y, et al. microRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy[J]. Cell Death Dis, 2017, 8(3): e2658.
|
34 |
LIANG Y R, LIU H, ZHU J M, et al. Inhibition of p53/miR-34a/SIRT1 axis ameliorates podocyte injury in diabetic nephropathy[J]. Biochem Biophys Res Commun, 2021, 559: 48-55.
|
35 |
王蕴倩, 薛 磊, 李慧聪, 等. miR-92a-3p靶向GPR124调控糖尿病肾病足细胞损伤的机制[J]. 中国老年学杂志, 2019, 39(19): 4789-4793.
|
36 |
LIU F X, GUO J, QIAO Y J, et al. miR-138 plays an important role in diabetic nephropathy through SIRT1-p38-TTP regulatory axis[J].J Cell Physiol,2021,236(9): 6607-6618.
|
37 |
WANG X L, GAO Y B, YI W M, et al. Inhibition of miRNA-155 alleviates high glucose-induced podocyte inflammation by targeting SIRT1 in diabetic mice[J]. J Diabetes Res, 2021, 2021: 5597394.
|
38 |
高 飞, 张欣欣, 杨 冰, 等. 微小RNA-193a调控Wilms瘤基因1促进小鼠糖尿病肾病足细胞凋亡[J]. 解剖学报, 2021, 52(5): 728-736.
|
39 |
ZHA F F, BAI L, TANG B, et al. microRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy[J]. J Cell Biochem, 2019,120(8): 12574-12581.
|
40 |
WANG L, LI H. miR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3[J].Biosci Rep,2020,40(4):BSR20193653.
|
41 |
GUO J J, HAN J, LIU J Y, et al. microRNA-770-5p contributes to podocyte injury via targeting E2F3 in diabetic nephropathy[J]. Rev Bras De Pesquisas Med E Biol, 2020, 53(9): e9360.
|
42 |
LONG B D, WAN Y, ZHANG S Q, et al. LncRNA XIST protects podocyte from high glucose-induced cell injury in diabetic nephropathy by sponging miR-30 and regulating AVEN expression[J]. Arch Physiol Biochem, 2023, 129(3): 610-617.
|