吉林大学学报(医学版) ›› 2024, Vol. 50 ›› Issue (4): 1182-1188.doi: 10.13481/j.1671-587X.20240435
• 综述 • 上一篇
收稿日期:
2023-09-30
出版日期:
2024-07-28
发布日期:
2024-08-01
通讯作者:
石爱平
E-mail:sap@jlu.edu.cn
作者简介:
付晓敏(1998-),女,湖北省荆门市人,在读硕士研究生,主要从事乳腺外科临床方面的研究。
基金资助:
Xiaomin FU,Jianling JIA,Yanhong DOU,Wenyong REN,Aiping SHI()
Received:
2023-09-30
Online:
2024-07-28
Published:
2024-08-01
Contact:
Aiping SHI
E-mail:sap@jlu.edu.cn
摘要:
乳腺癌发病率逐年上升,其发病机制十分复杂。肠道菌群功能紊乱与乳腺癌发生发展有密切关联。肠道菌群产生的β-葡萄糖醛酸酶,可通过肠肝循环调节雌激素水平,进而影响激素受体阳性乳腺癌的发生发展并导致他莫昔芬耐药;肠道菌群来源的短链脂肪酸(SCFAs)和石胆酸(LCA)等代谢产物可参与调节肿瘤细胞周期和细胞增殖;肠道菌群的定植维持了肠道屏障的完整性并调控T淋巴细胞介导的抗肿瘤免疫。维持肠道菌群稳态可提高肿瘤化疗和免疫治疗效果,并减轻抗肿瘤治疗中的不良反应。免疫治疗中工程益生菌的靶向作用可协助提升药物治疗精准度。肠道菌群对放射治疗的影响尚不明确,但调节肠道菌群可辅助治疗放射性肠病。现对肠道菌群与乳腺癌的相关性及影响进行综述,并分析其在乳腺癌治疗中的作用。
中图分类号:
付晓敏,贾建玲,窦艳红,任文勇,石爱平. 肠道菌群对乳腺癌发生发展的影响及其治疗应用的研究进展[J]. 吉林大学学报(医学版), 2024, 50(4): 1182-1188.
Xiaomin FU,Jianling JIA,Yanhong DOU,Wenyong REN,Aiping SHI. Research progress in effect of intestinal flora on occurrence and development of breast cancer and its therapeutic application[J]. Journal of Jilin University(Medicine Edition), 2024, 50(4): 1182-1188.
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2021,71(3):209-249. |
2 | ARNOLD M, MORGAN E, RUMGAY H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J]. Breast, 2022, 66: 15-23. |
3 | WU M H, CHOU Y C, CHOU W Y, et al. Relationships between critical period of estrogen exposure and circulating levels of insulin-like growth factor-Ⅰ (IGF-Ⅰ) in breast cancer: evidence from a case-control study[J]. Int J Cancer, 2010, 126(2): 508-514. |
4 | FU A K, YAO B Q, DONG T T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372.e26. |
5 | NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J].Science,2020,368(6494): 973-980. |
6 | PARIDA S, WU S G, SIDDHARTH S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and β-catenin axes[J]. Cancer Discov, 2021, 11(5): 1138-1157. |
7 | XUAN C Y, SHAMONKI J M, CHUNG A, et al. Microbial dysbiosis is associated with human breast cancer[J]. PLoS One, 2014, 9(1): e83744. |
8 | TERRISSE S, DEROSA L, IEBBA V, et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment[J]. Cell Death Differ, 2021, 28(9): 2778-2796. |
9 | BAEK A E. Bacteria benefit tumor cells[J]. Sci Signal, 2022, 15(729): eabq4492. |
10 | WU A H, TSENG C, VIGEN C, et al. Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study[J]. Breast Cancer Res Treat, 2020, 182(2): 451-463. |
11 | GRUBER C J, TSCHUGGUEL W, SCHNEEBERGER C, et al. Production and actions of estrogens[J]. N Engl J Med, 2002, 346(5): 340-352. |
12 | GRAY J M, RASANAYAGAM S, ENGEL C, et al. State of the evidence 2017: an update on the connection between breast cancer and the environment[J]. Environ Health, 2017, 16(1): 94. |
13 | PARIDA S, SHARMA D. The microbiome-estrogen connection and breast cancer risk[J].Cells,2019,8(12): 1642. |
14 | ADLERCREUTZ H, MARTIN F. Biliary excretion and intestinal metabolism of progesterone and estrogens in man[J]. J Steroid Biochem, 1980, 13(2): 231-244. |
15 | KWA M, PLOTTEL C S, BLASER M J, et al. The intestinal microbiome and estrogen receptor-positive female breast cancer[J].J Natl Cancer Inst,2016,108(8): djw029. |
16 | HU S W, DING Q Y, ZHANG W, et al. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism[J]. Gut Microbes, 2023, 15(1): 2236749. |
17 | MOORE S C, MATTHEWS C E, OU-SHU X, et al. Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal Chinese women[J]. J Natl Cancer Inst, 2016, 108(10):103. |
18 | ROSENBERG L, BETHEA T N, VISCIDI E, et al. Postmenopausal female hormone use and estrogen receptor-positive and-negative breast cancer in African American women[J].J Natl Cancer Inst,2016,108(4): 361. |
19 | ZACKSENHAUS E, SHRESTHA M, LIU J C, et al. Mitochondrial OXPHOS induced by RB1 deficiency in breast cancer: implications for anabolic metabolism, stemness,and metastasis[J].Trends Cancer,2017,3(11): 768-779. |
20 | SOTGIA F, LISANTI M P. Mitochondrial mRNA transcripts predict overall survival, tumor recurrence and progression in serous ovarian cancer: companion diagnostics for cancer therapy[J].Oncotarget,2017,8(40): 66925-66939. |
21 | REDDY B S, HANSON D, MANGAT S, et al. Effect of high-fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols[J]. J Nutr, 1980, 110(9): 1880-1887. |
22 | MCINTOSH F M, MAISON N, HOLTROP G, et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities[J]. Environ Microbiol, 2012, 14(8): 1876-1887. |
23 | DABEK M, MCCRAE S I, STEVENS V J, et al. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria[J].FEMS Microbiol Ecol,2008,66(3): 487-495. |
24 | REDDY B S, ENGLE A, SIMI B, et al. Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer[J]. Gastroenterology, 1992, 102(5): 1475-1482. |
25 | ADLERCREUTZ H, MARTIN F, PULKKINEN M, et al. Intestinal metabolism of estrogens[J]. J Clin Endocrinol Metab, 1976, 43(3): 497-505. |
26 | XIE W J, HUANG Y F, XIE W L, et al. Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells[J]. PLoS One, 2010, 5(5): e10850. |
27 | MIKÓ E, VIDA A, KOVÁCS T, et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 958-974. |
28 | PARK H S, HAN J H, PARK J W, et al. Sodium propionate exerts anticancer effect in mice bearing breast cancer cell xenograft by regulating JAK2/STAT3/ROS/p38 MAPK signaling[J].Acta Pharmacol Sin,2021,42(8): 1311-1323. |
29 | MA H, YU Y, WANG M M, et al. Correlation between microbes and colorectal cancer: tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids[J]. Apoptosis, 2019, 24(1/2): 168-183. |
30 | DONALDSON G P, LADINSKY M S, YU K B,et al. Gut microbiota utilize immunoglobulin A for mucosal colonization[J]. Science, 2018, 360(6390): 795-800. |
31 | YANG Y B, LI L L, XU C J, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis[J]. Gut, 2020, 70(8): 1495-1506. |
32 | MA J, SUN L Q, LIU Y, et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer[J]. BMC Microbiol, 2020, 20(1): 82. |
33 | WANG H, RONG X Y, ZHAO G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594. |
34 | LI Y Y, DONG B B, WU W, et al. Metagenomic analyses reveal distinct gut microbiota signature for predicting the neoadjuvant chemotherapy responsiveness in breast cancer patients[J]. Front Oncol, 2022, 12: 865121. |
35 | ZHANG Y Y, ZHANG Z M. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-821. |
36 | WU S Y, XU Y, CHEN L, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the FUTURE-C-Plus trial[J].Mol Cancer,2022,21(1): 84. |
37 | MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489. |
38 | ROUTY B, CHATELIER E L, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. |
39 | VÉTIZOU M, PITT J M, DAILLÈRE R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084. |
40 | GURBATRI C R, LIA I, VINCENT R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies[J]. Sci Transl Med, 2020, 12(530): eaax0876. |
41 | DAILLÈRE R, VÉTIZOU M, WALDSCHMITT N, et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects[J]. Immunity, 2016, 45(4): 931-943. |
42 | LV Z, LIU R D, SU K Q, et al. Acupuncture ameliorates breast cancer-related fatigue by regulating the gut microbiota-gut-brain axis[J]. Front Endocrinol, 2022, 13: 921119. |
43 | BULTMAN S J. Emerging roles of the microbiome in cancer[J]. Carcinogenesis, 2014, 35(2): 249-255. |
44 | LOZUPONE C A, STOMBAUGH J I, GORDON J I, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. |
45 | 张晨宇, 单忠艳. 肠道菌群及其代谢产物在 2 型糖尿病中的作用研究进展[J]. 中国实用内科杂志,2023, 43(8): 682-687. |
46 | APETOH L, GHIRINGHELLI F, TESNIERE A,et al.Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy[J]. Nat Med, 2007, 13(9): 1050-1059. |
47 | SHIAO S L, KERSHAW K M, LIMON J J, et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39(9): 1202-1213.e6. |
48 | URIBE-HERRANZ M, RAFAIL S, BEGHI S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response[J]. J Clin Invest, 2020, 130(1): 466-479. |
49 | MITRA A, GROSSMAN BIEGERT G W, DELGADO A Y, et al. Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(1): 163-171. |
50 | REIS FERREIRA M, ANDREYEV H J N, MOHAMMED K, et al. Microbiota- and radiotherapy-induced gastrointestinal side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy[J].Clin Cancer Res,2019,25(21): 6487-6500. |
51 | LIU J, LIU C, YUE J B. Radiotherapy and the gut microbiome: facts and fiction[J]. Radiat Oncol, 2021, 16(1): 9. |
52 | CUI M, XIAO H W, LUO D, et al. Circadian rhythm shapes the gut microbiota affecting host radiosensitivity[J]. Int J Mol Sci, 2016, 17(11): 1786. |
[1] | 魏雪,文雪,谢潇,王月媛,黄丹,杨明. lncRNA H19和IGF2基因在乳腺癌组织中的表达水平及印记状态[J]. 吉林大学学报(医学版), 2024, 50(4): 1109-1115. |
[2] | 葛亚杰,徐文,关诗敏,王丽娜. 多囊卵巢综合征病因及其发病机制的研究进展[J]. 吉林大学学报(医学版), 2024, 50(1): 288-294. |
[3] | 周雪冰,林千千,李艳春. 聚岩藻多糖对小鼠巨噬细胞分泌炎症因子的影响及其机制[J]. 吉林大学学报(医学版), 2023, 49(6): 1452-1456. |
[4] | 钏志睿,杨红英,李支尧,陈东,倪慧静,卢肖凯,陈海涛,罗晓茂. 剪切波弹性成像在乳腺非肿块病变良恶性鉴别诊断中的作用[J]. 吉林大学学报(医学版), 2023, 49(6): 1625-1634. |
[5] | 李朝政,黄晓巍,张泽鹏,石妍玉,陈颖. 肠-肝轴在动脉粥样硬化发生发展中作用的研究进展[J]. 吉林大学学报(医学版), 2023, 49(6): 1669-1676. |
[6] | 赵月生,李祖彬,刘海鸥,陶昆麟,赵齐海,李娜. 沉默CDKL1基因通过调控PTEN/Akt/mTOR信号通路对乳腺癌MCF-7细胞增殖和侵袭的抑制作用[J]. 吉林大学学报(医学版), 2023, 49(5): 1234-1242. |
[7] | 牟长春,权春姬,金全金,朴正日. 胸腺素β4在乳腺癌组织中的表达及其对乳腺癌细胞迁移和侵袭的影响[J]. 吉林大学学报(医学版), 2023, 49(4): 890-895. |
[8] | 赵玉哲,赵怡然,冯丽,高山,王霞,曹文庆,张静. 微创旋切术联合传统开放手术在乳腺多发肿瘤治疗中的应用[J]. 吉林大学学报(医学版), 2023, 49(3): 750-756. |
[9] | 覃艳春,黄衍强,陆钢,黄干荣,唐华英,戴园园. 幽门螺杆菌感染性慢性胃炎模型小鼠肠道各区域的菌群分布特征及其机制[J]. 吉林大学学报(医学版), 2023, 49(2): 289-297. |
[10] | 庄雪峰,律广富,林贺,黄晓巍,周佳,李禹墨,赵嘉睿,林喆,王雨辰. 黄芪对大黄诱导大鼠腹泻的治疗作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1156-1166. |
[11] | 王凯新,董晓梦,苏毅鹏,陈金波. 肠道菌群与抑郁症关系的研究进展[J]. 吉林大学学报(医学版), 2022, 48(4): 1094-1100. |
[12] | 黄爽,陈琛,黄波. 柠檬苦素对营养性肥胖大鼠脂质代谢和肠道菌群的影响[J]. 吉林大学学报(医学版), 2022, 48(4): 858-865. |
[13] | 蒋孙班,康思思,赵利娜,王朝,蒋丽娜. TLRs信号通路和TLRs的Cross-talk在炎症性疾病中作用的研究进展[J]. 吉林大学学报(医学版), 2022, 48(3): 825-831. |
[14] | 冯少青,孟峻. 血清和糖皮质激素诱导蛋白激酶3与肿瘤发生发展关系的研究进展Research progress in relationship between serum and glucocorticoid-induced protein kinase 3 and occurrence and development of tumor[J]. 吉林大学学报(医学版), 2022, 48(2): 540-545. |
[15] | 于秀艳,李铤,丛占杰,王文龙,张晓伟,吴雪峰. 乳腺癌患者外周血中hMAM、SBEM和CEACAM19 mRNA联合检测及其临床意义[J]. 吉林大学学报(医学版), 2022, 48(1): 195-202. |
|