1 |
PATEL S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy[J]. J Steroid Biochem Mol Biol, 2018, 182: 27-36.
|
2 |
ABBARA A, DHILLO W S. Targeting elevated GnRH pulsatility to treat polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2021, 106(10): e4275-e4277.
|
3 |
CHAUDHARI N, DAWALBHAKTA M, NAMPOOTHIRI L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile[J]. Reprod Biol Endocrinol, 2018, 16(1): 37.
|
4 |
NAGAE M, UENOYAMA Y, OKAMOTO S, et al. Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator[J]. Proc Natl Acad Sci U S A, 2021, 118(5): e2009156118.
|
5 |
ESPARZA L A, SCHAFER D, HO B S, et al. Hyperactive LH pulses and elevated kisspeptin and NKB gene expression in the arcuate nucleus of a PCOS mouse model[J]. Endocrinology, 2020, 161(4): bqaa018.
|
6 |
SILVA M S B, DESROZIERS E, HESSLER S, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: implications for polycystic ovary syndrome[J]. EBioMedicine, 2019, 44: 582-596.
|
7 |
COUTINHO E A, KAUFFMAN A S. The role of the brain in the pathogenesis and physiology of polycystic ovary syndrome (PCOS)[J]. Med Sci, 2019, 7(8): 84.
|
8 |
ROSENFIELD R L, EHRMANN D A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited[J].Endocr Rev,2016,37(5): 467-520.
|
9 |
GARG A, PATEL B, ABBARA A, et al. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS)[J]. Clin Endocrinol, 2022, 97(2): 156-164.
|
10 |
WALTERS K A, HANDELSMAN D J. Role of androgens in the ovary[J]. Mol Cell Endocrinol, 2018, 465: 36-47.
|
11 |
VIGIL P, CONTRERAS P, ALVARADO J L, et al. Evidence of subpopulations with different levels of insulin resistance in women with polycystic ovary syndrome[J]. Hum Reprod, 2007, 22(11): 2974-2980.
|
12 |
IBÁÑEZ L, OBERFIELD S E, WITCHEL S, et al. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence[J].Horm Res Paediatr,2017,88(6):371-395.
|
13 |
TOSI F, MOLIN FDAL, ZAMBONI F, et al. Serum androgens are independent predictors of insulin clearance but not of insulin secretion in women with PCOS[J]. J Clin Endocrinol Metab, 2020, 105(5): dgaa095.
|
14 |
LI Y, CHEN C Y, MA Y, et al. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS)[J]. Life Sci, 2019, 228: 167-175.
|
15 |
KELLY C C, LYALL H, PETRIE J R, et al. Low grade chronic inflammation in women with polycystic ovarian syndrome[J]. J Clin Endocrinol Metab, 2001, 86(6): 2453-2455.
|
16 |
RUDNICKA E, KUNICKI M, SUCHTA K, et al. Inflammatory markers in women with polycystic ovary syndrome[J]. Biomed Res Int, 2020, 2020: 4092470.
|
17 |
ÖZAY A C, ÖZAY Ö E. The importance of inflammation markers in polycystic ovary syndrome[J]. Rev Assoc Med Bras (1992), 2021, 67(3): 411-417.
|
18 |
HE S Q, MAO X D, LEI H F, et al. Peripheral blood inflammatory-immune cells as a predictor of infertility in women with polycystic ovary syndrome[J]. J Inflamm Res, 2020, 13: 441-450.
|
19 |
ZHAI Y, PANG Y L. Systemic and ovarian inflammation in women with polycystic ovary syndrome[J]. J Reprod Immunol, 2022, 151: 103628.
|
20 |
PARK C B, LARSSON N G. Mitochondrial DNA mutations in disease and aging[J]. J Cell Biol, 2011, 193(5): 809-818.
|
21 |
BEHBOUDI-GANDEVANI S, RAMEZANI TEHRANI F, BIDHENDI YARANDI R, et al. The association between polycystic ovary syndrome, obesity, and the serum concentration of adipokines[J]. J Endocrinol Invest, 2017, 40(8): 859-866.
|
22 |
DROLET R, BÉLANGER C, FORTIER M, et al. Fat depot-specific impact of visceral obesity on adipocyte adiponectin release in women[J]. Obesity, 2009,17(3): 424-430.
|
23 |
PEREIRA S, PARK E, MOORE J, et al. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo [J]. Physiol Appl Nutr Metab, 2015, 40(11): 1129-1136.
|
24 |
ZENG X, XIE Y J, LIU Y T, et al. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity[J]. Clin Chim Acta, 2020, 502: 214-221.
|
25 |
TREMELLEN K, PEARCE K. Dysbiosis of Gut Microbiota (DOGMA):a novel theory for the development of Polycystic Ovarian Syndrome[J]. Med Hypotheses, 2012, 79(1): 104-112.
|
26 |
ZHANG J C, SUN Z H, JIANG S M, et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis[J]. mSystems, 2019, 4(2): e00017-e00019.
|
27 |
TORRES P J, SIAKOWSKA M, BANASZEWSKA B,et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism[J]. J Clin Endocrinol Metab, 2018, 103(4): 1502-1511.
|
28 |
YANG Y L, ZHOU W W, WU S, et al. Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome[J]. Endocrinology, 2021, 162(10): bqab118.
|
29 |
ZENG B, LAI Z W, SUN L J, et al. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study[J]. Res Microbiol, 2019, 170(1): 43-52.
|
30 |
HWANG I, PARK Y J, KIM Y R, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J]. FASEB J, 2015, 29(6):2397-2411.
|
31 |
JOBIRA B, FRANK D N, PYLE L, et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota[J]. J Clin Endocrinol Metab, 2020, 105(6): e2134-e2144.
|
32 |
ZHANG M M, HU R N, HUANG Y J, et al. Present and future: crosstalks between polycystic ovary syndrome and gut metabolites relating to gut microbiota[J]. Front Endocrinol, 2022, 13: 933110.
|
33 |
CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
|
34 |
OUTEIRIÑO-IGLESIAS V, ROMANÍ-PÉREZ M, GONZÁLEZ-MATÍAS L C, et al. GLP-1 increases preovulatory LH source and the number of mature follicles,As well As synchronizing the onset of puberty in female rats[J].Endocrinology,2015,156(11):4226-4237.
|
35 |
RUTKOWSKA A, RACHOŃ D. Bisphenol A (BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS)[J]. Gynecol Endocrinol, 2014, 30(4): 260-265.
|
36 |
KAWA I A, MASOOD A, GANIE M A, et al. Bisphenol A (BPA) acts as an endocrine disruptor in women with Polycystic Ovary Syndrome: Hormonal and metabolic evaluation[J]. Obes Med, 2019, 14: 100090.
|
37 |
DUNN A J. Environmental influences and polycystic ovarian syndrome[J].Clin Obstet Gynecol,2021,64(1): 33-38.
|
38 |
ABBOTT D H, BARNETT D K, BRUNS C M,et al. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome?[J].Hum Reprod Update,2005,11(4): 357-374.
|
39 |
YILMAZ B, VELLANKI P, ATA B, et al. Diabetes mellitus and insulin resistance in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis[J]. Fertil Steril, 2018, 110(3): 523-533.e14.
|
40 |
MIMOUNI N E H, PAIVA I, BARBOTIN A L, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process[J]. Cell Metab, 2021, 33(3): 513-530.e8.
|
41 |
CHEN B Q, XU P, WANG J, et al. The role of MiRNA in polycystic ovary syndrome (PCOS)[J]. Gene, 2019, 706: 91-96.
|
42 |
LONG W, ZHAO C, JI C B, et al. Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers[J]. Cell Physiol Biochem, 2014, 33(5): 1304-1315.
|
43 |
HOSSEINI E, SHAHHOSEINI M, AFSHARIAN P, et al. Role of epigenetic modifications in the aberrant CYP19A1 gene expression in polycystic ovary syndrome[J]. Arch Med Sci, 2019, 15(4): 887-895.
|
44 |
MUNAWAR LONE N, BABAR S, SULTAN S,et al. Association of the CYP17 and CYP19 gene polymorphisms in women with polycystic ovary syndrome from Punjab, Pakistan[J]. Gynecol Endocrinol, 2021, 37(5): 456-461.
|
45 |
LI Y X, FANG L L, YAN Y, et al. Association between human SHBG gene polymorphisms and risk of PCOS: a meta-analysis[J]. Reprod Biomed Online, 2021, 42(1): 227-236.
|
46 |
TIAN L F, ZOU Y, TAN J, et al. Androgen receptor gene mutations in 258 Han Chinese patients with polycystic ovary syndrome[J]. Exp Ther Med, 2021, 21(1): 31.
|
47 |
CHEN J X, GUAN L B, LIU H W, et al. GALNT2 gene variant rs4846914 is associated with insulin and insulin resistance depending on BMI in PCOS patients: a case-control study[J].Reprod Sci, 2021,28(4):1122-1132.
|
48 |
TIAN Y, LI J Y, SU S Z, et al. PCOS-GWAS susceptibility variants in THADA, INSR, TOX3, and DENND1A are associated with metabolic syndrome or insulin resistance in women with PCOS[J]. Front Endocrinol, 2020, 11: 274.
|
49 |
KARAKAYA C, ÇIL A P, BILGUVAR K, et al. Further delineation of familial polycystic ovary syndrome (PCOS) via whole-exome sequencing: PCOS-related rare FBN3 and FN1 gene variants are identified[J]. J Obstet Gynaecol Res, 2022, 48(5): 1202-1211.
|
50 |
SEYED ABUTORABI E, HOSSEIN RASHIDI B, IRANI S, et al. Investigation of the FSHR, CYP11, and INSR mutations and polymorphisms in Iranian infertile women with polycystic ovary syndrome (PCOS)[J]. Rep Biochem Mol Biol, 2021, 9(4): 470-477.
|
51 |
ZOU J, WU D C, LIU Y, et al. Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis[J].Gynecol Endocrinol,2019,35(1): 81-85.
|
52 |
BHATNAGER R, JALTHURIA J, SEHRAWAT R, et al. Evaluating the association of TNF α promoter haplotype with its serum levels and the risk of PCOS: a case control study[J]. Cytokine, 2019, 114: 86-91.
|
53 |
HESAMPOUR F, NAMAVAR JAHROMI B, TAHMASEBI F,et al.Association between interleukin-32 and interleukin-17A single nucleotide polymorphisms and serum levels with polycystic ovary syndrome[J]. Iran J Allergy Asthma Immunol, 2019,18(1): 91-99.
|
54 |
AL-AWADI A M, BABI, FINAN R R, et al. ADIPOQ gene polymorphisms and haplotypes linked to altered susceptibility to PCOS: a case-control study[J]. Reprod Biomed Online, 2022, 45(5): 995-1005.
|