吉林大学学报(医学版) ›› 2023, Vol. 49 ›› Issue (6): 1669-1676.doi: 10.13481/j.1671-587X.20230636
收稿日期:
2022-09-08
出版日期:
2023-11-28
发布日期:
2023-12-22
通讯作者:
陈颖
E-mail:chenying66323@163.com
作者简介:
李朝政(1989-),男,河南省新乡市人,在读博士研究生,主要从事中医药防治心血管病方面的研究。
基金资助:
Received:
2022-09-08
Online:
2023-11-28
Published:
2023-12-22
摘要:
肠-肝轴是指肠道和肝脏之间进行物质交换的双向通道,具有调节机体糖脂和炎症的作用。肠-肝轴主要通过维持机体肝肠循环的动态平衡,影响肝脏和肠道功能来调节肠道菌群,调控胆汁酸(BAs)代谢,促进胆固醇的合成与分解,进而调节机体的脂质代谢和炎症反应等。动脉粥样硬化(AS)是糖脂代谢异常的炎症性疾病,是引发患者心血管疾病(CVD)甚至死亡的重要原因。现阶段关于AS的发病机制尚不明确,多认为AS与糖脂和炎症相关,因此肠-肝轴与AS之间可能存在一定的关联。现结合近年来国内外关于肠-肝轴与AS的相关研究,从AS的发病机制、肠-肝轴的概念和肠-肝轴调控AS进程的相关机制,包括肠道菌群、BAs代谢、胆固醇代谢、炎症反应和中医学研究等方面进行论述,旨在为AS的防治提供新的思路。
中图分类号:
李朝政,黄晓巍,张泽鹏,石妍玉,陈颖. 肠-肝轴在动脉粥样硬化发生发展中作用的研究进展[J]. 吉林大学学报(医学版), 2023, 49(6): 1669-1676.
1 | LIBBY P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855): 524-533. |
2 | POTHINENI N V K, SUBRAMANY S, KURIAKOSE K, et al. Infections, atherosclerosis, and coronary heart disease[J]. Eur Heart J, 2017, 38(43): 3195-3201. |
3 | MENTAL DISORDERS COLLABORATORSGBD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet Psychiatry, 2022, 9(2):137-150. |
4 | DAWSON P A. Impact of inhibiting ileal apical versus basolateral bile acid transport on cholesterol metabolism and atherosclerosis in mice[J]. Dig Dis, 2015, 33(3): 382-387. |
5 | SHENG W, JI G, ZHANG L. The effect of lithocholic acid on the gut-liver axis[J]. Front Pharmacol, 2022, 13: 910493. |
6 | BRANDL K, KUMAR V, ECKMANN L. Gut-liver axis at the frontier of host-microbial interactions[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(5): G413-G419. |
7 | KATSIKI N, MANTZOROS C, MIKHAILIDIS D P. Adiponectin, lipids and atherosclerosis[J]. Curr Opin Lipidol, 2017, 28(4): 347-354. |
8 | ALFADDAGH A, MARTIN S S, LEUCKER T M,et al.Inflammation and cardiovascular disease: from mechanisms to therapeutics[J]. Am J Prev Cardiol, 2020, 4: 100130. |
9 | LAURSEN I H, BANASIK K, HAUE A D, et al. Cohort profile: Copenhagen Hospital Biobank-Cardiovascular Disease Cohort (CHB-CVDC): construction of a large-scale genetic cohort to facilitate a better understanding of heart diseases[J]. BMJ Open, 2021, 11(12): e049709. |
10 | XU S W, KAMATO D, LITTLE P J, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics[J]. Pharmacol Ther, 2019, 196: 15-43. |
11 | GENG S, CHEN K Q, YUAN R X, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis[J]. Nat Commun, 2016, 7: 13436. |
12 | MIYAKE Y, YAMAMOTO K. Role of gut microbiota in liver diseases[J]. Hepatol Res,2013, 43(2): 139-146. |
13 | WANG Z W, GUO X P, ZHANG Q, et al. Elimination of Ox-LDL through the liver inhibits advanced atherosclerotic plaque progression[J]. Int J Med Sci, 2021, 18(16): 3652-3664. |
14 | WANG X M, YANG Y H, HUYCKE M M. Risks associated with enterococci as probiotics[J]. Food Res Int, 2020, 129: 108788. |
15 | TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. |
16 | LENG J, TIAN H J, FANG Y, et al. Amelioration of non-alcoholic steatohepatitis by Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination is associated with reducing endotoxin gut leakage[J]. Front Cell Infect Microbiol, 2022, 12: 827516. |
17 | PANDAK W M, KAKIYAMA G. The acidic pathway of bile acid synthesis: not just an alternative pathway[J]. Liver Res, 2019, 3(2): 88-98. |
18 | FATTORUSSO A, DI GENOVA L, DELL’ISOLA G B, et al. Autism spectrum disorders and the gut microbiota[J]. Nutrients, 2019, 11(3): 521. |
19 | JIE Z Y, XIA H H, ZHONG S L, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nat Commun, 2017, 8(1): 845. |
20 | ZHANG S T, TIAN J, LEI M, et al. Association between dietary fiber intake and atherosclerotic cardiovascular disease risk in adults: a cross-sectional study of 14, 947 population based on the National Health and Nutrition Examination Surveys[J]. BMC Public Health, 2022, 22(1): 1076. |
21 | DU Y, LI X X, SU C Y, et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice[J]. Br J Pharmacol, 2020, 177(8): 1754-1772. |
22 | ZOU F G, QIU Y, HUANG Y L, et al. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function[J]. Cell Death Dis, 2021, 12(6): 582. |
23 | MAZZAWI T. Gut microbiota manipulation in irritable bowel syndrome[J].Microorganisms,2022,10(7): 1332. |
24 | XU J, YANG Y J. Implications of gut microbiome on coronary artery disease[J]. Cardiovasc Diagn Ther, 2020, 10(4): 869-880. |
25 | SANCHEZ-GIMENEZ R, AHMED-KHODJA W, MOLINA Y, et al. Gut microbiota-derived metabolites and cardiovascular disease risk: a systematic review of prospective cohort studies[J]. Nutrients, 2022, 14(13): 2654. |
26 | TAN Y, ZHOU J Y, LIU C, et al. Association between plasma trimethylamine N-oxide and neoatherosclerosis in patients with very late stent thrombosis[J]. Can J Cardiol, 2020, 36(8): 1252-1260. |
27 | MOHAMMADI A, VAHABZADEH Z, JAMALZADEH S, et al. Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages[J]. Adv Med Sci, 2018, 63(1): 57-63. |
28 | WITKOWSKI M, WEEKS T L, HAZEN S L. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4): 553-570. |
29 | LIU H C, ZHU H J, XIA H, et al. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota[J]. Food Res Int, 2021, 141: 110078. |
30 | DE AGUIAR VALLIM T Q, TARLING E J, EDWARDS P A. Pleiotropic roles of bile acids in metabolism[J]. Cell Metab, 2013, 17(5): 657-669. |
31 | RAMÍREZ-PÉREZ O, CRUZ-RAMÓN V, CHINCHILLA-LÓPEZ P, et al. The role of the gut microbiota in bile acid metabolism[J]. Ann Hepatol, 2017, 16(1): s15-s20. |
32 | YANG J Y, ZHANG T T, YU Z L, et al. Taurine alleviates trimethylamine N-oxide-induced atherosclerosis by regulating bile acid metabolism in ApoE-/- mice[J]. J Agric Food Chem,2022, 70(18): 5738-5747. |
33 | ZURKINDEN L, SVIRIDOV D, VOGT B, et al. Downregulation of Cyp7a1 by cholic acid and chenodeoxycholic acid in Cyp27a1/ApoE double knockout mice: differential cardiovascular outcome[J]. Front Endocrinol (Lausanne), 2020, 11: 586980. |
34 | BUSTOS A Y, FONT DE VALDEZ G, FADDA S, et al. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health[J]. Food Res Int, 2018, 112: 250-262. |
35 | DEVKOTA S, WANG Y W, MUSCH M W, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in IL-10-/- mice[J]. Nature, 2012, 487(7405): 104-108. |
36 | ISLAM K B, FUKIYA S, HAGIO M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology, 2011, 141(5): 1773-1781. |
37 | GUAN B Y, TONG J L, HAO H P, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases[J]. Acta Pharm Sin B, 2022, 12(5): 2129-2149. |
38 | CHIANG J Y L, FERRELL J M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573. |
39 | HALKIAS C, DARBY W G, FELTIS B N, et al. Marine bile natural products as agonists of the TGR5 receptor[J]. J Nat Prod, 2021, 84(5): 1507-1514. |
40 | MEMBERS A F, COMMITTEE FOR PRACTICE GUIDELINES CPG) E S C, NATIONAL CARDIAC SOCIETIES E C.2019 ESC/EAS guidelines for the management of dyslipidaemias:Lipid modification to reduce cardiovascular risk[J]. Atherosclerosis, 2019, 290: 140-205. |
41 | LEE J J, CHI G, FITZGERALD C, et al. Cholesterol efflux capacity and its association with adverse cardiovascular events: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2021, 8: 774418. |
42 | GRÜNER N, MATTNER J. Bile acids and microbiota: multifaceted and versatile regulators of the liver-gut axis[J]. Int J Mol Sci, 2021, 22(3): 1397. |
43 | LAM V, SU J D, KOPROWSKI S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735. |
44 | MATSUO M.ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis[J].J Pharmacol Sci,2022,148(2):197-203. |
45 | ROCHA V Z, FOLCO E J, SUKHOVA G, et al. Interferon-gamma,a Th1 cytokine,regulates fat inflammation: a role for adaptive immunity in obesity[J]. Circ Res, 2008, 103(5): 467-476. |
46 | LI H Z, WANG Q, ZHANG Y Y, et al. Onset of coronary heart disease is associated with HCMV infection and increased CD14 +CD16 + monocytes in a population of Weifang, China[J]. Biomed Environ Sci, 2020, 33(8): 573-582. |
47 | TAN Y Y, YUE S R, LU A P, et al. The improvement of nonalcoholic steatohepatitis by Poria Cocos polysaccharides associated with gut microbiota and NF-κB/CCL3/CCR1 axis[J]. Phytomedicine, 2022, 103: 154208. |
48 | AZUMA R W, KADOWAKI T, EL-SAED A, et al. Associations of D-dimer and von Willebrand factor with atherosclerosis in Japanese and white men[J]. Acta Cardiol, 2010, 65(4): 449-456. |
49 | ALLAN R B, DELANEY C L, MILLER M D, et al. A comparison of flow-mediated dilatation and peripheral artery tonometry for measurement of endothelial function in healthy individuals and patients with peripheral arterial disease[J]. Eur J Vasc Endovasc Surg, 2013, 45(3): 263-269. |
50 | YAMASHITA T, KASAHARA K, EMOTO T,et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases[J]. Circ J, 2015, 79(9): 1882-1890. |
51 | LIU Z Q, SUN X, LIU Z B, et al. Phytochemicals in traditional Chinese medicine can treat gout by regulating intestinal flora through inactivating NLRP3 and inhibiting XOD activity[J]. J Pharm Pharmacol. 2022, 74(7): 919-929. |
52 | BLEVINS H M, XU Y M, BIBY S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. |
53 | SONG Y J, ZHAO Y G, MA Y M, et al. Biological functions of NLRP3 inflammasome: a therapeutic target in inflammatory bowel disease[J]. Cytokine Growth Factor Rev, 2021, 60: 61-75. |
54 | LI X H, LIU L Z, CHEN L, et al. Aerobic exercise regulates FGF21 and NLRP3 inflammasome-mediated pyroptosis and inhibits atherosclerosis in mice[J]. PLoS One, 2022, 17(8): e0273527. |
55 | O’CONNOR K D, BROPHY T, FONAROW G C,et al. Testing for coronary artery disease in older patients with new-onset heart failure: findings from get with the guidelines-heart failure[J].Circ Heart Fail,2020,13(4): e006963. |
56 | LI W, LUO J C, PENG F D, et al. Spatial metabolomics identifies lipid profiles of human carotid atherosclerosis[J]. Atherosclerosis, 2023, 364: 20-28. |
57 | CHEN R, CHEN T, ZHOU Z H, et al. Integrated pyroptosis measurement and metabolomics to elucidate the effect and mechanism of tangzhiqing on atherosclerosis[J].Front Physiol, 2022,13: 937737. |
58 | WANG Y T, SUN X, QIU J W, et al. A UHPLC-Q-TOF-MS-based serum and urine metabolomics approach reveals the mechanism of Gualou-Xiebai herb pair intervention against atherosclerosis process in ApoE-/- mice[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2023, 1215: 123567. |
59 | 郁 晨. 基于“肝-肠”轴探讨冠心宁片抗西藏小型猪AS的作用及机制[D]. 杭州: 浙江中医药大学, 2020. |
60 | 段盈竹, 张 欢, 于 游, 等. 基于“木郁土壅”理论从“肝-肠轴学说”探析越鞠丸防治动脉粥样硬化的机制[J]. 中华中医药学刊, 2022, 40(10): 99-102. |
[1] | 李海涛, 李沁, 蔡飞, 胡国富, 滕云飞. 芹菜素对小鼠RAW264.7巨噬细胞极化和炎症反应的作用及其机制[J]. 吉林大学学报(医学版), 2023, 49(3): 549-556. |
[2] | 覃艳春,黄衍强,陆钢,黄干荣,唐华英,戴园园. 幽门螺杆菌感染性慢性胃炎模型小鼠肠道各区域的菌群分布特征及其机制[J]. 吉林大学学报(医学版), 2023, 49(2): 289-297. |
[3] | 余淑华,刘朏,吴倩倩,杨东伟. 藏红花素对自发性高血压大鼠血管内皮功能障碍及动脉粥样硬化的作用及其ROCK/JNK信号通路机制[J]. 吉林大学学报(医学版), 2022, 48(6): 1481-1489. |
[4] | 庄雪峰,律广富,林贺,黄晓巍,周佳,李禹墨,赵嘉睿,林喆,王雨辰. 黄芪对大黄诱导大鼠腹泻的治疗作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1156-1166. |
[5] | 王凯新,董晓梦,苏毅鹏,陈金波. 肠道菌群与抑郁症关系的研究进展[J]. 吉林大学学报(医学版), 2022, 48(4): 1094-1100. |
[6] | 黄爽,陈琛,黄波. 柠檬苦素对营养性肥胖大鼠脂质代谢和肠道菌群的影响[J]. 吉林大学学报(医学版), 2022, 48(4): 858-865. |
[7] | 张一凡,丁洁,杜敏,冯骁腾,刘萍. 丹酚酸B对小鼠动脉粥样硬化病变和巨噬细胞胞葬作用的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 561-567. |
[8] | 王雨涵,高影. 非酒精性脂肪性肝病并发2型糖尿病诊断和治疗的研究进展[J]. 吉林大学学报(医学版), 2020, 46(6): 1324-1331. |
[9] | 赵丽萍, 黄术兵, 张博枰, 周芝兰, 贾雪冰, 孙孟菲, 乔晨萌, 陈雪, 申延琴, 崔春. 鼠李糖乳杆菌对斑马鱼脊髓损伤后肠道炎症的抑制作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(04): 680-686. |
[10] | 周丽程, 刘先发, 李强, 李蓉, 黄家淦, 张琼, 李晓飞. 小檗碱联合辛伐他汀对动脉粥样硬化模型大鼠的抗动脉粥样硬化作用及其机制[J]. 吉林大学学报(医学版), 2019, 45(04): 849-854. |
[11] | 王途, 孙晓旭, 陈龙, 崔海鹏, 刘凯, 谢亚芹, 李颖, 赵娟. Urantide对动脉粥样硬化大鼠胸主动脉组织中c-Jun氨基末端激酶表达的影响及其意义[J]. 吉林大学学报(医学版), 2019, 45(04): 813-818. |
[12] | 毕红东, 谢亚芹, 崔海鹏, 刘凯, 孙晓旭, 王途, 赵娟. 多肽化合物urantide对动脉粥样硬化大鼠胸主动脉和VSMC中Ⅳ型胶原表达的影响[J]. 吉林大学学报(医学版), 2019, 45(02): 342-346. |
[13] | 孙晓旭, 王途, 崔海鹏, 刘凯, 高海成, 赵娟. urantide对动脉粥样硬化大鼠血钙、血脂和心肌酶学指标的影响[J]. 吉林大学学报(医学版), 2019, 45(02): 331-335. |
[14] | 刘晓洁, 梅涛, 麻红艳, 叶山东. 单纯2型糖尿病患者颈动脉粥样硬化斑块形成及其稳定性影响因素分析[J]. 吉林大学学报(医学版), 2018, 44(02): 350-355. |
[15] | 徐吉光, 李宇宁. 叶酸联合维生素B12对高同型半胱氨酸血症引起大鼠动脉粥样硬化的治疗作用[J]. 吉林大学学报(医学版), 2017, 43(05): 943-947. |
|