Journal of Jilin University(Medicine Edition) ›› 2018, Vol. 44 ›› Issue (06): 1312-1316.doi: 10.13481/j.1671-587x.20180635
Previous Articles Next Articles
Received:
2017-10-18
Online:
2018-11-28
Published:
2018-11-28
CLC Number:
[1] Shakeri F, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat[J]. Biofactors, 2017, 43(4):567-576. [2] Hu A, Huang JJ, Zhang JF, et al. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway[J]. Oncotarget, 2017, 8(31):50747-50760. [3] Xu X, Zhu Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway[J]. Am J Transl Res, 2017, 9(8):3633-3641. [4] Han S, Xu J, Guo X, et al. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production[J]. Clin Exp Pharmacol Physiol, 2018,45(1):84-93. [5] Shrestha S, Zhu J, Wang Q, et al. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKbeta/NF-kappaB/COX-2 signaling pathway[J]. Int J Oncol, 2017,51(4):1249-1260. [6] Tyagi N, Kumari A, Dash D, et al. Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice[J]. Environ Toxicol Pharmacol, 2014, 38(3):913-921. [7] Tyagi N, Dash D, Singh R. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model[J]. Inflammopharmacology, 2016, 24(6):335-345. [8] Lu Q, Mundy M, Chambers E, et al. Alda-1 protects against acrolein-induced acute lung injury and endothelial barrier dysfunction[J]. Am J Respir Cell Mol Biol, 2017,57(6):662-673. [9] Zhang Q, Wu D, Yang Y, et al. Dexmedetomidine alleviates hyperoxia-induced acute lung injury via inhibiting NLRP3 inflammasome activation[J]. Cell Physiol Biochem, 2017, 42(5):1907-1919. [10] Lax S, Rayes J, Wichaiyo S, et al. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse[J]. Am J Physiol Lung Cell Mol Physiol, 2017,313(6):L1016-L1029. [11] Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells[J]. Biochem Biophys Commun, 2017, 491(2):522-529. [12] Huang H, Wang Y. The protective effect of cinnamaldehyde on lipopolysaccharide induced acute lung injury in mice[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(8):58-63. [13] Máca J, Jor O, Holub M, et al. Past and present ARDS mortality rates:a systematic review[J]. Respir Care, 2017, 62(1):113-122. [14] Balakrishnan A, Drobatz KJ, Silverstein DC. Retrospective evaluation of the prevalence, risk factors, management, outcome, and necropsy findings of acute lung injury and acute respiratory distress syndrome in dogs and cats:29 cases (2011-2013)[J]. J Vet Emerg Crit Care (San Antonio), 2017,27(6):662-673. [15] Tan Z, Wang H, Sun J, et al. Effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid-induced acute lung injury in rats[J]. Acta Cir Bras, 2018,33(3):250-258. [16] Frat JP, Coudroy R, Marjanovic N, et al. High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure[J]. Ann Transl Med, 2017, 5(14):297. [17] Xu Z, Gu L, Bian Q, et al. Oxygenation, inflammatory response and lung injury during one lung ventilation in rabbits using inspired oxygen fraction of 0.6vs 1.0[J]. J Biomed Res, 2016, 31(1):56-64. [18] Nieman GF, Satalin J. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI)[J]. Intensive Care Med Exp, 2017, 5(1):8. [19] Schmidt GA. Managing acute lung injury[J]. Clin Chest Med, 2016, 37(4):647-658. [20] Shishodia S, Sethi G, Aggarwal BB. Curcumin:getting back to the roots[J]. Ann N Y Acad Sci, 2005, 1056:206-217. [21] Zhu J, Sanidad KZ, Sukamtoh E, et al. Potential roles of chemical degradation in the biological activities of curcumin[J].Food Funct, 2017,8(3):907-914. [22] Francis AP, Devasena T, Ganapathy S, et al. Multi-walled carbon nanotube-induced inhalation toxicity:Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate[J]. Nanomedicine, 2018, 14(6):1809-1822. [23] Zhou G, Sun G, Zhou Y, et al. Transcriptomic analysis of human non-small lung cancer cells A549 treated by one synthetic curcumin derivative MHMD[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(9):35-39. [24] Zhang Y, Liang D, Dong L, et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury[J]. Respir Res, 2015, 16:43. [25] Feng J, Xiao B, Chen W, et al. Synthesis and anti-inflammatory evaluation of novel C66 analogs for the treatment of LPS-induced acute lung injury[J]. Chem Biol Drug Des, 2015, 86(4):753-763. [26] Feng C, Xia Y, Zou P, et al. Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells[J]. Mol Carcinog, 2017, 56(7):1765-1777. [27] Shukla P, Dwivedi P, Gupta PK, et al. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis[J]. Expert Opin Drug Deliv, 2014, 11(11):1697-1712. [28] Jiang Y, Wong S, Chen F, et al. Influencing selectivity to cancer cells with mixed nanoparticles prepared from albumin-polymer conjugates and block copolymers[J]. Bioconjug Chem, 2017, 28(4):979-985. [29] Zupancic Š, Kocbek P, Zariwala MG, et al. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation[J]. Mol Pharm, 2014, 11(7):2334-2345. [30] Xiao X, Yang M, Sun D, et al. Curcumin protects against sepsis-induced acute lung injury in rats[J]. J Surg Res, 2012, 176(1):e31-e39. [31] Silva R, Carmo H, Vilas-Boas V, et al. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects[J]. Toxicol Lett, 2015, 232(1):271-283. [32] Nguyen V, Malik DS, Howland MA. Methylene blue protects against paraquat-induced acute lung injury in rats[J]. Int Immunopharmacol, 2014, 20(2):358. [33] Gilani RA, Rafique M, Rehman A, et al. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas[J]. J Basic Microbiol, 2016, 56(2):105-119. [34] Uzun FG, Demir F, Kalender S, et al. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats[J]. Food Chem Toxicol, 2010, 48(6):1714-1720. [35] Hassani S, Sepand MR, Jafari A, et al. Protective effects of curcumin and vitamin E against chlorpyrifos-induced lung oxidative damage[J]. Hum Exp Toxicol, 2015, 34(6):668-676. [36] Wang Y, Shan X, Dai Y, et al. Curcumin analog L48H37 prevents lipopolysaccharide-induced TLR4 signaling pathway activation and sepsis via targeting MD2[J]. J Pharmacol Exp Ther, 2015, 353(3):539-550. [37] Miyashita T, Ahmed AK, Nakanuma S, et al. A three-phase approach for the early identification of acute lung injury induced by severe sepsis[J]. In Vivo, 2016, 30(4):341-349. [38] Schnoor M, García Ponce A, Vadillo E, et al. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis[J]. Cell Mol Life Sci, 2017,74(11):1985-1997. [39] Kim J, Jeong SW, Quan H, et al. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK[J]. J Anesth, 2016, 30(1):100-108. [40] Xu F, Diao R, Liu J, et al. Curcumin attenuates staphylococcus aureus-induced acute lung injury[J]. Clin Respir J, 2015, 9(1):87-97. [41] Xu F, Lin SH, Yang YZ, et al. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-beta1/SMAD3 pathway[J]. Int Immunopharmacol, 2013, 16(1):1-6. [42] Kumari A, Tyagi N, Dash D, et al. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2014, 38(3):1103-1112. [43] Fard N, Saffari A, Emami G, et al. Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models[J]. J Surg Res, 2014, 189(2):274-284. [44] Wu NC, Wang JJ. Curcumin attenuates liver warm ischemia and reperfusion-induced combined restrictive and obstructive lung disease by reducing matrix metalloprotease 9 activity[J]. Transplant Proc, 2014, 46(4):1135-1138. [45] Fan Z, Yao J, Li Y, et al. Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb[J]. Int J Clin Exp Pathol, 2015, 8(4):3451-3459. [46] Okudan N, Belviranli M, Gökbel H, et al. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury[J]. Phytomedicine, 2013, 20(10):844-848. [47] Aydin MS, Caliskan A, Kocarslan A, et al. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat[J]. Int J Surg, 2014, 12(6):601-605. [48] Yeh JH, Yang YC, Wang JC, et al. Curcumin attenuates renal ischemia and reperfusion injury-induced restrictive respiratory insufficiency[J]. Transplant Proc, 2013, 45(10):3542-3545. [49] Oguz A, Kapan M, Onder A, et al. The effects of curcumin on the liver and remote organs after hepatic ischemia reperfusion injury formed with Pringle manoeuvre in rats[J]. Eur Rev Med Pharmacol Sci, 2013, 17(4):457-466. [50] Sakurai R, Villarreal P, Husain S, et al. Curcumin protects the developing lung against long-term hyperoxic injury[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(4):L301-L311. [51] Nehra S, Bhardwaj V, Bansal A, et al. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats[J]. J Physiol Biochem, 2016, 72(4):763-779. [52] Cho YJ, Yi CO, Jeon BT, et al. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs[J]. Korean J Physiol Pharmacol, 2013, 17(4):267-274. [53] Garcia-Nino WR, Zatarain-Barron ZL, Hernandez-Pando R, et al. Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(Ⅵ):effect of curcumin[J]. Biol Trace Elem Res, 2015, 167(1):130-145. [54] Zhang F, Yang F, Zhao H, et al. Curcumin alleviates lung injury in diabetic rats by inhibiting NF-kappaB pathway[J]. Clin Exp Pharmacol Physiol, 2015,42(9):956-963. [55] Dong ZW, Chen J, Ruan YC, et al. CFTR-regulated MAPK/NF-kappaB signaling in pulmonary inflammation in thermal inhalation injury[J]. Sci Rep, 2015, 5:15946-15958. |
[1] | HOU Hailong, TANG Ying, QU Xinglong, HUA Shucheng. Clinical effect of dexmedetomidine combined with non-invasive positive pressure ventilation in treatment of patients with AECOPD complicated with pulmonary encephalopathy and evaluation on its safety [J]. Journal of Jilin University(Medicine Edition), 2018, 44(05): 1014-1019. |
[2] | PENG Yinyin, CHEN Liping, LIU Lin, CHEN Jianbin, CHEN Yajuan, HAN Xiaoli, XIAO Qing. Rituximab-induced interstitial lung disease:A case report and literature review [J]. Journal of Jilin University Medicine Edition, 2017, 43(06): 1260-1264. |
[3] | ZHANG Xueyang, MA Ji, MENG Guangping, WANG Qi, LI Wei, XU Yanling, ZHANG Jie, GAO Peng. Analysis on prevalence of chronic obstructive pulmonary disease based on pulmonary function screening in Changchun urban area of Jilin province [J]. Journal of Jilin University Medicine Edition, 2017, 43(05): 1047-1052. |
[4] | TANG Ying, HUANG Yuanping, JING Wenhua, GUAN Yinghui. Effect of sulbactam sodium/cefoperazone sodium on neutrophil extracellular traps of patients with recurrent lower respiratory tract infection [J]. Journal of Jilin University Medicine Edition, 2017, 43(03): 607-610. |
[5] | YANG Junxia, CAO Shuren, ZHANG Min. Effect of Smad ubiquitination regulatory factor 2 on TGF-β1-induced activation in lung fibroblasts and its molecular mechanism [J]. Journal of Jilin University Medicine Edition, 2015, 41(05): 891-897. |
[6] | TANG Wenfang, LIU Rihui, YU Yaqin, LIU Jin, GAO Peng, WANG Ke. Prevalence of COPD among Chinese people aged 40 years and over from 2000 to 2014:A Meta-analysis [J]. Journal of Jilin University Medicine Edition, 2015, 41(05): 961-968. |
[7] | LI Ning, SUN Wenwei, ZHAO Jianjun, TAN Ping, WANG Jing. Clinical value of serum procalcitonin in diagnosis and treatment of community acquired pneumonia [J]. Journal of Jilin University Medicine Edition, 2015, 41(02): 352-355. |
[8] | LI Fang, GUAN Wenxia, REN Fei, TONG Xuexia, SUN Yuning. Expressions of Sirt-1 and Hif-1α in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease and their significances [J]. Journal of Jilin University Medicine Edition, 2015, 41(02): 356-361. |
[9] | CHEN Xin, LIU Te, WANG Shuyue, ZHANG Wenjing, XIE Jingfang, QIN Yuanming, QIAN Donghua, YE Lin. Effect of daily mean temperature on hospital admissions of patients with acute exacerbation of chronic obstructive pulmonary disease [J]. Journal of Jilin University Medicine Edition, 2015, 41(02): 389-392. |
[10] | . Advance research on relationship between cytokines and pulmonary fibrosis [J]. Journal of Jilin University Medicine Edition, 2014, 40(06): 1325-1329. |
[11] | . Advance research on relationship between aquaporins 1,3,4,5 and acute lung injury [J]. Journal of Jilin University Medicine Edition, 2014, 40(05): 1119-1122. |
[12] | ZHANG Jia,ZHAO Feng-qin,TAN Ping,JI Hong. Predictive value of prothrombin G20210A mutation detection in pulmonary thromboembolism [J]. Journal of Jilin University Medicine Edition, 2014, 40(05): 1080-1084. |
[13] | XU Xiao-guang,JIANG Zhen-yu,DU Min-juan,YANG Ya-qin,JIANG Ying-chao. Evaluation on effectiveness of salmeterol/fluticasonepropionate combined with N-acetylcysteine in treatment of chronic obstructive pulmonary disease [J]. Journal of Jilin University Medicine Edition, 2014, 40(04): 870-874. |
[14] | . Advance research on role of chemokine and chemokine receptors in acute lung injury [J]. Journal of Jilin University Medicine Edition, 2014, 40(04): 908-912. |
[15] | ZHANG Min,CAO Shu-ren. Influence of salvianolic acid B on expressions of TGF-β1/Smad signaling pathway related proteinsin human lung fibroblasts and its mechanism [J]. Journal of Jilin University Medicine Edition, 2014, 40(04): 705-709. |
|