Journal of Jilin University(Medicine Edition) ›› 2024, Vol. 50 ›› Issue (4): 1098-1108.doi: 10.13481/j.1671-587X.20240424
• Research in clinical medicine • Previous Articles Next Articles
Xue BAI,Chenchen WANG,Zhangzhen SHI,Lintao BI()
Received:
2023-05-13
Online:
2024-07-28
Published:
2024-08-01
Contact:
Lintao BI
E-mail:bilt@jlu.edu.cn
CLC Number:
Xue BAI,Chenchen WANG,Zhangzhen SHI,Lintao BI. Analysis on correlation between body components at T4 thoracic vertebra plane on chest CT in patients with multiple myeloma and prognosis[J].Journal of Jilin University(Medicine Edition), 2024, 50(4): 1098-1108.
Tab. 1
Baseline characteristics of MM patients (n=79)"
Characteristic | Statistic |
---|---|
Age (year) Gender [n(%)] Male Female | 61.5±8.7 37(46.8) 42(53.2) |
BMI(kg·m-2) | 22.6±3.8 |
BMI≥24 kg·m-2 [n(%)] | 23(29.1) |
Subcutaneous adipose area(pixel2) | 5 377(3 000, 8 763) |
Mediastinal adipose area(pixel2) | 277(138, 443) |
Pectoralis major area(pixel2) | 547(235, 973) |
Pectoralis minor area(pixel2) | 299(167, 476) |
LDH(U·L-1) | 174.1(138.5, 215.3) |
LDH≥247 U·L-1 [n(%)] | 13(16.5) |
Hb(g·L-1) | 94.6±31.4 |
Hb≤100 g·L-1 [n(%)] | 50(63.3) |
Ca(mmol·L-1) | 2.43(2.20, 2.60) |
Ca>2.65 mmol·L-1 [n(%)] | 18(22.8) |
Scr(μmol·L-1) | 96.1(66.4, 214.1) |
Scr≥177 μmol·L-1 [n(%)] | 22(27.8) |
Alb(g·L-1) | 34.0±7.5 |
Alb<35 g·L-1 [n(%)] | 43(54.4) |
β2-MG(mg·L-1) | 5.0(3.3,7.8) |
β2-MG≥5.5 mg·L-1 [n(%)] | 38(48.1) |
Involved/uninvolved light chain≥100 [n(%)] | 17(21.5) |
ISS stage [n(%)] | |
1 | 14(17.7) |
2 | 28(35.4) |
3 | 31(39.2) |
Treatment method[n(%)] | |
Chemotherapy | 71(89.9) |
Hematopoietic stem cell transplantation | 8(10.1) |
Survive[n(%)] | |
Yes | 34(43.0) |
No | 45(57.0) |
Median follow-up time (month) | 22(5-73) |
Tab. 2
Univariate analysis on OS of MM patients"
Characteristic | HR | 95%CI | P |
---|---|---|---|
Gender | 0.958 | 0.483-1.900 | 0.902 |
Male Female | |||
Age of diagnosis | 1.023 | 0.983-1.064 | 0.259 |
BMI(kg·m-2) | 1.675 | 0.756-3.711 | 0.204 |
≥24 <24 | |||
Subcutaneous adipose area(pixel2) | 2.260 | 1.116-4.578 | 0.024 |
≥5 377 <5 377 | |||
Mediastinal adipose area(pixel2) | 1.001 | 0.999-1.002 | 0.339 |
≥277 <277 | |||
Pectoralis major area(pixel2) | 0.965 | 0.487-1.912 | 0.918 |
≥547 <547 | |||
Pectoralis minor area(pixel2) | 0.981 | 0.495-1.946 | 0.957 |
≥299 <299 | |||
LDH(U·L-1) | 1.235 | 0.474-3.216 | 0.665 |
<247 ≥247 | |||
Hb(g·L-1) | 1.278 | 0.629-2.596 | 0.498 |
>100 ≤100 | |||
Ca(mmol·L-1) | 2.088 | 1.007-4.327 | 0.048 |
≤2.65 >2.65 | |||
Scr(μmol·L-1) | 2.209 | 1.105-4.414 | 0.025 |
<177 ≥177 | |||
Alb(g·L-1) | 1.461 | 0.730-2.926 | 0.284 |
≥35 <35 | |||
β2-MG(mg·L-1) | 1.858 | 0.928-3.721 | 0.080 |
<5.5 ≥5.5 | |||
Involved/uninvolved light chain[n(%)] | 1.588 | 0.758-3.327 | 0.220 |
<100 ≥100 | |||
ISS stage | 1.730 | 1.040-2.879 | 0.035 |
Treatment method | 0.042 | 0.000-8.089 | 0.237 |
Chemotherapy Hematopoietic stem cell transplantation |
Tab. 3
Multifactor analysis 1 on OS of MM patients"
Variable | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
95%CI of HR | P | 95%CI of HR | P | 95%CI of HR | P | |||
Subcutaneous adipose area(pixel2) | 1.200-7.064 | 0.018 | 1.503-8.129 | 0.004 | 1.228-5.782 | 0.013 | ||
≥5 377 | ||||||||
<5 377 | ||||||||
BMI(kg·m-2) | 0.713-5.317 | 0.193 | - | - | - | - | ||
≥24 | ||||||||
<24 | ||||||||
Gender | 0.350-2.193 | 0.778 | - | - | - | - | ||
Male | ||||||||
Female | ||||||||
Age of diagnosis | 0.988-1.107 | 0.124 | - | - | - | - | ||
Hb(g·L-1) | 0.204-2.254 | 0.527 | 0.191-1.630 | 0.286 | - | - | ||
>100 | ||||||||
≤100 | ||||||||
LDH(U·L-1) | 0.496-5.681 | 0.405 | 0.419-4.152 | 0.636 | 0.526-4.437 | 0.436 | ||
<247 | ||||||||
≥247 | ||||||||
Ca(mmol·L-1) | 0.878-5.172 | 0.094 | 0.803-4.163 | 0.151 | 0.969-4.398 | 0.060 | ||
≤2.65 | ||||||||
>2.65 | ||||||||
Scr(μmol·L-1) | 0.566-6.669 | 0.291 | 0.372-3.330 | 0.847 | - | - | ||
<177 | ||||||||
≥177 | ||||||||
Alb(g·L-1) | 1.245-11.163 | 0.019 | 1.072-9.200 | 0.037 | 0.924-5.131 | 0.075 | ||
≥35 | ||||||||
<35 | ||||||||
β2-MG(mg·L-1) | 0.384-26.681 | 0.282 | 0.209-7.466 | 0.808 | 0.549-2.536 | 0.673 | ||
<5.5 | ||||||||
≥5.5 | ||||||||
Involved/uninvolved light chain | 0.385-2.703 | 0.969 | 0.545-3.470 | 0.500 | - | - | ||
<100 | ||||||||
≥100 | ||||||||
ISS | 0.075-1.932 | 0.244 | 0.340-3.672 | 0.855 | - | - | ||
Treatment method | - | 0.973 | - | - | - | - | ||
Chemotherapy | ||||||||
Hematopoietic stem cell transplantation |
Tab. 4
Multifactor analysis 2 on OS of MM patients"
Variable | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
95%CI of HR | P | 95%CI of HR | P | 95%CI of HR | P | |||
Mediastinal adipose area(pixel2) | 0.551-3.152 | 0.536 | 1.503-8.129 | 0.589 | 0.523-2.201 | 0.847 | ||
≥277 | ||||||||
<277 | ||||||||
BMI(kg·m-2) | 0.959-7.149 | 0.060 | - | - | - | - | ||
≥24 | ||||||||
<24 | ||||||||
Gender | 0.308-1.936 | 0.582 | - | - | - | - | ||
Male | ||||||||
Female | ||||||||
Age of diagnosis | 0.983-1.099 | 0.178 | - | - | - | - | ||
Hb(g·L-1) | 0.212-2.673 | 0.660 | 0.191-1.630 | 0.364 | - | - | ||
>100 | ||||||||
≤100 | ||||||||
LDH(U·L-1) | 0.390-4.198 | 0.684 | 0.419-4.152 | 0.994 | 0.437-3.593 | 0.674 | ||
<247 | ||||||||
≥247 | ||||||||
Ca(mmol·L-1) | 0.758-4.230 | 0.184 | 0.803-4.163 | 0.284 | 0.933-4.167 | 0.076 | ||
≤2.65 | ||||||||
>2.65 | ||||||||
Scr(μmol· L-1) | 0.806-10.448 | 0.103 | 0.372-3.330 | 0.318 | - | - | ||
<177 | ||||||||
≥177 | ||||||||
Alb(g· L-1) | 0.988-8.086 | 0.053 | 1.072-9.200 | 0.364 | 0.643-3.150 | 0.384 | ||
≥35 | ||||||||
<35 | ||||||||
β2-MG(mg·L-1) | 0.288-15.360 | 0.464 | 0.209-7.466 | 0.846 | 0.719-3.252 | 0.270 | ||
<5.5 | ||||||||
≥5.5 | ||||||||
Involved/uninvolved light chain | 0.315-2.256 | 0.734 | 0.545-3.470 | 0.915 | - | - | ||
<100 | ||||||||
≥100 | ||||||||
ISS stage | 0.102-2.052 | 0.307 | 0.340-3.672 | 0.756 | - | - | ||
Treatment method | - | 0.974 | - | - | - | - | ||
Chemotherapy | ||||||||
Hematopoietic stem cell transplantation |
Tab. 5
Multifactor analysis 3 on OS of MM patients"
Variable | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
95%CI of HR | P | 95%CI of HR | P | 95%CI of HR | P | |||
Pectoralis major area(pixel2) | 0.513-3.561 | 0.542 | 0.545-2.582 | 0.666 | 0.489-1.970 | 0.957 | ||
≥547 | ||||||||
<547 | ||||||||
BMI(kg·m-2) | 0.972-8.749 | 0.056 | - | - | - | - | ||
≥24 | ||||||||
<24 | ||||||||
Gender | 0.224-2.031 | 0.483 | - | - | - | - | ||
Male | ||||||||
Female | ||||||||
Age of diagnosis | 0.979-1.094 | 0.220 | - | - | - | - | ||
Hb(g·L-1) | 0.220-2.165 | 0.486 | 0.178-1.645 | 0.280 | - | - | ||
>100 | ||||||||
≤100 | ||||||||
LDH(U·L-1) | 0.414-4.718 | 0.590 | 0.324-3.219 | 0.972 | 0.437-3.584 | 0.676 | ||
<247 | ||||||||
≥247 | ||||||||
Ca(mmol·L-1) | 0.758-4.214 | 0.184 | 0.721-3.492 | 0.251 | 0.942-4.188 | 0.071 | ||
≤2.65 | ||||||||
>2.65 | ||||||||
Scr(μmol·L-1) | 0.813-9.625 | 0.103 | 0.568-5.369 | 0.331 | - | - | ||
<177 | ||||||||
≥177 | ||||||||
Alb(g·L-1) | 0.977-7.527 | 0.056 | 0.732-5.703 | 0.172 | 0.647-3.021 | 0.395 | ||
≥35 | ||||||||
<35 | ||||||||
β2-MG(mg·L-1) | 0.334-20.016 | 0.363 | 0.229-7.582 | 0.757 | 0.704-3.262 | 0.288 | ||
<5.5 | ||||||||
≥5.5 | ||||||||
Involved/uninvolved light chain | 0.308-2.107 | 0.660 | 0.400-2.483 | 0.995 | - | - | ||
<100 | ||||||||
≥100 | ||||||||
ISS stage | 0.088-2.030 | 0.281 | 0.368-3.774 | 0.781 | - | - | ||
Treatment method | - | 0.974 | - | - | - | - | ||
Chemotherapy | ||||||||
Hematopoietic stem cell transplantation |
Tab. 6
Multifactor analysis 4 on OS of MM patients"
Variable | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
95%CI of HR | P | 95%CI of HR | P | 95%CI of HR | P | |||
Pectoralis minor area(pixel2) | 0.531-1.988 | 0.601 | 0.367-1.691 | 0.541 | 0.422-1.681 | 0.626 | ||
≥299 | ||||||||
<299 | ||||||||
BMI(kg·m-2) | 0.834-6.671 | 0.106 | - | - | - | - | ||
≥24 | ||||||||
<24 | ||||||||
Gender | 0.339-2.518 | 0.877 | - | - | - | - | ||
Male | ||||||||
Female | ||||||||
Age of diagnosis | 0.982-1.098 | 0.187 | - | - | - | - | ||
Hb(g·L-1) | 0.202-2.277 | 0.529 | 0.197-1.743 | 0.337 | - | - | ||
>100 | ||||||||
≤100 | ||||||||
LDH(U·L-1) | 0.358-4.012 | 0.769 | 0.311-3.056 | 0.965 | 0.438-3.559 | 0.678 | ||
<247 | ||||||||
≥247 | ||||||||
Ca(mmol·L-1) | 0.833-4.841 | 0.121 | 0.717-3.520 | 0.255 | 0.952-4.225 | 0.067 | ||
≤2.65 | ||||||||
>2.65 | ||||||||
Scr(μmol·L-1) | 0.603-8.099 | 0.232 | 0.463-4.530 | 0.525 | - | - | ||
<177 | ||||||||
≥177 | ||||||||
Alb(g·L-1) | 0.874-7.248 | 0.087 | 0.698-5.263 | 0.207 | 0.647-3.014 | 0.395 | ||
≥35 | ||||||||
<35 | ||||||||
β2-MG(mg·L-1) | 0.336-22.931 | 0.343 | 0.226-8.129 | 0.740 | 0.773-3.341 | 0.256 | ||
<5.5 | ||||||||
≥5.5 | ||||||||
Involved/uninvolved light chain | 0.283-2.066 | 0.597 | 0.397-2.538 | 0.994 | - | - | ||
<100 | ||||||||
≥100 | ||||||||
ISS stage | 0.106-2.190 | 0.345 | 0.379-4.235 | 0.701 | - | - | ||
Treatment method | - | 0.974 | - | - | - | - | ||
Chemotherapy | ||||||||
Hematopoietic stem cell transplantation |
1 | COWAN A J, GREEN D J, KWOK M, et al. Diagnosis and management of multiple myeloma: a review[J]. JAMA, 2022, 327(5): 464-477. |
2 | KIM J M, CHUNG E, CHO E S, et al. Impact of subcutaneous and visceral fat adiposity in patients with colorectal cancer[J]. Clin Nutr, 2021, 40(11): 5631-5638. |
3 | PAI P C, CHUANG C C, CHUANG W C, et al. Pretreatment subcutaneous adipose tissue predicts the outcomes of patients with head and neck cancer receiving definitive radiation and chemoradiation in Taiwan [J]. Cancer Med, 2018, 7(5): 1630-1641. |
4 | TAKEOKA Y, SAKATOKU K, MIURA A, et al. Prognostic effect of low subcutaneous adipose tissue on survival outcome in patients with multiple myeloma[J]. Clin Lymphoma Myeloma Leuk, 2016, 16(8): 434-441. |
5 | RAJKUMAR S V, DIMOPOULOS M A, PALUMBO A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma[J]. Lancet Oncol, 2014, 15(12): e538-e548. |
6 | RAJKUMAR S V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2016, 91(7): 719-734. |
7 | KUMAR S K, DISPENZIERI A, LACY M Q, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients[J]. Leukemia, 2014, 28(5): 1122-1128. |
8 | WANG J Z, SHI X J, YAO X C, et al. Deep learning-based CT imaging in diagnosing myeloma and its prognosis evaluation[J]. J Healthc Eng, 2021, 2021: 5436793. |
9 | HOPKINS J J, SAWYER M B. A review of body composition and pharmacokinetics in oncology[J]. Expert Rev Clin Pharmacol, 2017, 10(9): 947-956. |
10 | ALEIXO G F P, SHACHAR S S, NYROP K A, et al. Myosteatosis and prognosis in cancer: systematic review and meta-analysis[J]. Crit Rev Oncol Hematol, 2020, 145: 102839 |
11 | PETRELLI F, CORTELLINI A, INDINI A, et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis[J]. JAMA Netw Open, 2021, 4(3): e213520. |
12 | PICKHARDT P J, GRAFFY P M, PEREZ A A, et al. Opportunistic screening at abdominal CT: use of automated body composition biomarkers for added cardiometabolic value[J]. Radiographics, 2021, 41(2): 524-542. |
13 | PRADO C M, LIEFFERS J R, MCCARGAR L J, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study[J]. Lancet Oncol, 2008, 9(7): 629-635. |
14 | PRADO C M M, BIRDSELL L A, BARACOS V E. The emerging role of computerized tomography in assessing cancer cachexia[J]. Curr Opin Support Palliat Care, 2009, 3(4): 269-275. |
15 | BATES D D B, PICKHARDT P J. CT-derived body composition assessment as a prognostic tool in oncologic patients: from opportunistic research to artificial intelligence-based clinical implementation[J]. AJR Am J Roentgenol, 2022, 219(4): 671-680. |
16 | MATHUR S, ROZENBERG D, VERWEEL L, et al. Chest computed tomography is a valid measure of body composition in individuals with advanced lung disease[J]. Clin Physiol Funct Imaging, 2020, 40(5): 360-368. |
17 | GRAFFY P M, SUMMERS R M, PEREZ A A, et al. Automated assessment of longitudinal biomarker changes at abdominal CT: correlation with subsequent cardiovascular events in an asymptomatic adult screening cohort[J]. Abdom Radiol, 2021, 46(6): 2976-2984. |
18 | PICKHARDT P J, GRAFFY P M, ZEA R, et al. Automated abdominal CT imaging biomarkers for opportunistic prediction of future major osteoporotic fractures in asymptomatic adults[J]. Radiology, 2020, 297(1): 64-72. |
19 | PICKHARDT P J, GRAFFY P M, ZEA R, et al. Utilizing fully automated abdominal CT-based biomarkers for opportunistic screening for metabolic syndrome in adults without symptoms[J]. AJR Am J Roentgenol, 2021, 216(1): 85-92. |
20 | WESTON A D, KORFIATIS P, KLINE T L, et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning[J]. Radiology, 2019, 290(3): 669-679. |
21 | SHEN W, PUNYANITYA M, WANG Z M, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image[J]. J Appl Physiol, 2004, 97(6): 2333-2338. |
[1] | Shuangyan ZHAO,Hongguang ZHAO,Qiuyu LIN,Benzheng JIAO,Chenghe LIN. Imaging findings of 18F-FDG PET/CT in mesothelioma patients and its application in diagnosis [J]. Journal of Jilin University(Medicine Edition), 2024, 50(4): 1150-1155. |
[2] | Yunyun SUN,Yuguang YAO,Han ZHANG,Hanyi LI,Xianchun ZHU. Structural characteristics of mandible in patients with different osteofacial types measured by CBCT and influencing factors of mandibular retromolar space [J]. Journal of Jilin University(Medicine Edition), 2023, 49(6): 1561-1568. |
[3] | Shengnan YANG,Xue WANG,Xuefeng WANG,Tianyu ZHAO,Ying PAN,Dayong DING. Retroperitoneal giant lymphangioma: A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2023, 49(2): 508-513. |
[4] | Shan GAO,Yutong WANG,Minqiu LU,Lei SHI,Bin CHU,Yuehua DING,Mengzhen WANG,Li BAO. Analysis on causes for early death and its risk factors of patients with multiple myeloma in era of novel drugs [J]. Journal of Jilin University(Medicine Edition), 2022, 48(3): 783-789. |
[5] | Ping HU,Nan JIANG,Yinghua LI,Hongguang ZHAO. Analysis on characteristics of 18F-FDG PET/CT imaging of patient with primary small cell osteosarcoma of coccyx:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2022, 48(1): 216-221. |
[6] | Qiao LI,Zhenzhong SU,Zhaoyong WANG,Yanling XU,Qun ZHANG,Peng GAO,Jie ZHANG. Bortezomib-induced acute lung injury in patient with multiple myeloma:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2021, 47(4): 1022-1027. |
[7] | Qi ZHU,Lamei LI,Yanjun CAI,Fang XU,Junqi NIU,Wanyu LI. Hepatoid adenocarcinoma of stomach:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2021, 47(4): 1028-1032. |
[8] | LI Ying, QIU Tianyuan, BAO Xingfu, HU Min. Evaluation on expansion efficiency of microimplant-assisted rapid palatal expansion in treatment of maxillary transverse deficiency in adolescents with CBCT [J]. Journal of Jilin University(Medicine Edition), 2020, 46(05): 1050-1055. |
[9] | ZHANG Li, QUAN Tao, LIU Dayong, JIA Zhi. Effects of different root canal filing materals on root flexure resistance after random load fatigue test detected by Micro-CT [J]. Journal of Jilin University(Medicine Edition), 2020, 46(04): 822-827. |
[10] | ZHOU Dongkui, LU Mingqian, FENG Xuesong, LIU Yufei, SONG Hao, XU Liang. Follicular dendritic cell sarcoma of small intestine and ileocecal region: A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2020, 46(04): 858-862. |
[11] | GUO Fei, ZHU Lin, XU Hong, XIE Zongyu, ZHANG Li, DENG Xuefei. Analysis on correlation between image features of chest MSCT and prognosis in patients with novel coronavirus pneumonia [J]. Journal of Jilin University(Medicine Edition), 2020, 46(04): 867-874. |
[12] | ZHAO Jun, LIANG Jinyu. Improvement effects of aerobic exercise combined with resistance training on body composition, cardiovascular function and serum C-reactive protein level in male obese college students [J]. Journal of Jilin University(Medicine Edition), 2019, 45(05): 1134-1140. |
[13] | JING Wenhua, LI Hongyu, GUAN Yinghui. Comparison of values between Wells score and YEARS algorithm in dignosis of pulmonary embolism [J]. Journal of Jilin University(Medicine Edition), 2019, 45(01): 88-93. |
[14] | FENG Qing, WEN Ming. CT manifestations of hepatic lesions without obvious enhancement in arterial phase and their significancs in differential diagnosis [J]. Journal of Jilin University(Medicine Edition), 2019, 45(01): 163-169. |
[15] | WANG Baogang, MAN Xiaxia, MA Dashi, WANG Yong, CAO Dianbo. Huge thrombus in ascending aorta:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2018, 44(05): 1065-1067. |
|