吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3281-3292.doi: 10.13229/j.cnki.jdxbgxb.20220135

• 农业工程·仿生工程 • 上一篇    下一篇

玉米籽粒直收机板齿式脱粒装置设计与试验

耿端阳1(),孙延成1,王宗源1,王其欢1,明家锐1,杨昊霖1,徐海港2   

  1. 1.山东理工大学 农业工程与食品科学学院,山东 淄博,255022
    2.山东时风(集团)有限责任公司,山东 聊城,252899
  • 收稿日期:2022-02-15 出版日期:2023-11-01 发布日期:2023-12-06
  • 作者简介:耿端阳(1969-),男,教授,博士.研究方向:现代农机装备.E-mail:dygxt@sdut.edu.com
  • 基金资助:
    山东省现代农业产业技术体系岗位专家项目(SDAIT-02-12);国家重点研发计划项目(2021YFD2000502)

Design and experiment of plate tooth threshing device of corn grain direct harvester

Duan-yang GENG1(),Yan-cheng SUN1,Zong-yuan WANG1,Qi-huan WANG1,Jia-rui MING1,Hao-lin YANG1,Hai-gang XU2   

  1. 1.College of Agricultural Engineering and Food Science,Shangdong University of Technology,Zibo 255022,China
    2.Shi Feng Group Co. ,Ltd. ,Liaocheng 252899,China
  • Received:2022-02-15 Online:2023-11-01 Published:2023-12-06

摘要:

为满足黄淮海地区较高含水率玉米籽粒直收作业要求,解决现有玉米系列直收过程中易出现籽粒损伤和未脱率高的问题,结合黄淮海地区玉米收获特点,设计了脱粒齿板与脱粒凹板螺旋分布的板齿式脱粒滚筒,以及结合圆管栅格脱粒凹板的板齿式纵轴流脱粒装置。对关键部件进行理论分析,确定了影响脱粒性能的主要因素。通过4YZ-6型玉米籽粒直收机进行单因素试验,得到脱粒性能较好时滚筒转速、脱粒间隙、板齿长度的变化范围。以滚筒转速、脱粒间隙、板齿长度为试验因素进行正交试验,确定了较优的参数组合:滚筒转速为350 r/min,脱粒间隙为53 mm、板齿长度为100 mm。在该条件下,玉米果穗的籽粒破碎率为2.73%,未脱净率为0.41%,符合国家相关标准。

关键词: 农业工程, 玉米脱粒, 脱粒元件, 板齿结构, 籽粒直收

Abstract:

In order to meet the requirements of corn direct harvest with high moisture content in Huang Huai Hai area and solve the problems of grain damage and high non threshing rate in the process of direct harvest of existing corn series, combined with the characteristics of corn harvest in Huang Huai Hai area, a plate tooth threshing drum with spiral distribution of threshing tooth plate and threshing concave plate and a plate tooth longitudinal axial flow threshing device combined with circular tube grid threshing concave plate were designed. The rotating speed and diameter of the drum are determined. The stress of the grain in the threshing process of the newly developed plate tooth threshing element is analyzed. It is concluded that the grain crushing rate of the plate tooth threshing is lower than that of the nail tooth threshing. The length and height of the plate tooth are designed, and the main factors affecting the threshing performance are determined. Through the single factor test of 4YZ-6 corn grain harvester, the variation range of drum speed, threshing clearance and plate tooth length is obtained when threshing performance is good. The orthogonal experiment was carried out with the drum speed, threshing clearance and plate tooth length as the experimental factors. The regression equation and significance of the drum speed, threshing clearance and plate tooth length on the grain crushing rate and non threshing rate were obtained, and the experimental factors were analyzed by response surface analysis. The optimal parameter combination is determined: drum speed 350 r/min, threshing clearance 53 mm and plate tooth length 100 mm. Under this condition, the grain crushing rate of corn ear was 2.73%, and the non de purification rate was 0.41%, which met the relevant national standards.

Key words: agricultural engineering, corn threshing, threshing element, board of plate tooth, direct grain

中图分类号: 

  • S225.5

图1

基于低玉米脱粒损伤的脱粒分离装置"

图2

低损脱粒圆管凹板结构图"

图3

低损脱粒组件结构"

图4

脱粒过程籽粒受力分析"

图5

大田试验过程"

图6

滚筒转速对籽粒破碎率和未脱净率的影响"

图7

脱粒间隙对对籽粒破碎率和未脱净率的影响"

图8

板齿长度对籽粒破碎率和未脱净率的影响"

表1

试验因素与水平"

水平因素
滚筒转速/(r·min-1脱粒间隙/mm板齿长度/mm
-13254890
035053100
137558110

表2

试验方案和结果"

试验 序号试验因素水平考核指标
X1X2X3籽粒破碎率Y1/%未脱净率Y2/%
1-1-104.530.98
20113.110.87
30012.730.41
4-1103.701.21
5-1103.621.57
60-1-13.470.57
70002.790.62
81104.311.32
90002.850.62
1001-13.320.97
111-104.110.87
1210-14.011.17
131013.761.04
140002.880.65
150002.870.73
160002.890.67
17-1013.681.15

表3

籽粒破碎率方差分析"

变异 来源离均差 平方和自由度均方FP
总和5.3216
模型5.2990.59157.32<0.0001***
X10.05410.05414.570.0066**
X20.1310.1333.72<0.0007***
X30.03710.0379.960.016*
X1X20.3110.3182.42<0.0001
X1X30.01310.0133.540.102
X2X34.76×10-314.76×10-31.270.2962
X122.9212.92780.11<0.0001
X220.6110.61163.71<0.0001
X329.79×10-319.79×10-32.620.1495
残差0.02673.73×10-3
失拟0.0236.61×10-34.190.1002
纯误差6.32×10-341.58×10-3

表4

未脱净率方差分析"

变异 来源离均差 平方和自由度均方FP
总和1.5416
模型1.5090.1730.84<0.0001***
X10.03310.0336.010.0440*
X20.3810.3869.42<0.0001***
X30.05610.05610.310.0148*
X1X24.9×10-314.9×10-30.910.3728
X1X31.22×10-311.225×10-30.230.6486
X2X36.96×10-316.969×10-31.290.2936
X12111185.58<0.0001
X224.437×10-314.437×10-30.820.3951
X324.485×10-314.485×10-30.830.3927
残差0.03875.407×10-3
失拟0.03039.856×10-34.760.0829
纯误差8.280×10-342.07×10-3

图9

滚筒转速与脱粒间隙对籽粒破碎率响应面"

图10

滚筒转速与脱粒间隙对未脱净率响应面"

图11

滚筒转速与板齿长度对籽粒破碎率响应面"

图12

滚筒转速与板齿长度未脱净率响应面"

图13

脱粒间隙与板齿长度对籽粒破碎率响应面"

图14

脱粒间隙与板齿长度对未脱净率响应面"

1 陈志,郝付平,王锋德,等.中国玉米收获技术与装备发展研究[J].农业机械学报,2012,43(12): 44-50.
Chen Zhi, Hao Fu-ping, Wang Feng-de, et al. Research on corn harvesting technology and equipment development in China[J]. Journal of Agricultural Machinery, 2012, 43(12): 44-50.
2 高连兴,李飞,张新伟,等.含水率对种子玉米脱粒性能的影响机理[J].农业机械学报,2011,42(12): 92-96.
Gao Lian-xing, Li Fei, Zhang Xin-wei, et al. Mechanism of moisture content affect on corn seed thresin[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 92-96.
3 郝付平, 陈志.国内外玉米收获机械研究现状及思考[J].农机化研究, 2007, 29(10): 206-208.
Hao Fu-ping, Chen Zhi. Actuality of domestic and foreign corn harvester[J]. Journal of Agricultural Mechanization Research, 2007, 29(10): 206-208.
4 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报[J]. 作物杂志, 2014(2): 76-79.
Xie Rui-zhi, Lei Xiao-peng, Wang Ke-ru, et al. Preliminary report on mechanical harvest of summer maize seeds in Huang Huai Hai[J]. Journal of Crops, 2014(2): 76-79.
5 耿爱军, 杨建宁, 张兆磊, 等. 国内外玉米收获机械发展现状及展望[J].农机化研究,2016,38(4): 251-257.
Geng Ai-jun, Yang Jian-ning, Zhang Zhao-lei, et al. Development status and prospect of corn harvester at home and abroad[J]. Agricultural Mechanization Research, 2016, 38(4): 251-257.
6 相茂国.玉米籽粒直收机械适应性研究[D]. 淄博: 山东理工大学农业工程与食品科学学院,2014.
Xiang Mao-guo. Study on the adaptability of corn grain harvesting device[D]. Zibo: College of Agriculral Engineering and Food Science, Shandong University of Technology, 2014.
7 雷晓鹏. 黄淮海地区玉米机械收获籽粒可行性研究[D]. 保定: 河北农业大学农学院, 2015.
Lei Xiao-peng. Feasibility study on corn mechanical harvest in Huanghuaihai region[D]. Baoding: College of Agronomy, Hebei Agricultural University, 2015.
8 王建廷,李耀明,马征,等.玉米收获机械关键装置结构特点及发展趋势[J].农机化研究, 2019, 41(9): 1-8.
Wang Jian-ting, Li Yao-ming, Ma Zheng, et al. Structural characteristics and development trend of key equipment of corn harvesting machinery[J]. Journal of Agricultural Mechanization research, 2019, 41(9): 1-8.
9 王永刚, 张国海, 张恒, 等. 黄淮海地区夏玉米收获现状分析[J].中国农机化学报,2018,39(11): 112-115.
Wang Yong-gang, Zhang Guo-hai, Zhang Heng, et al. Analysis on current status of summer maize harvest in Huang-Huai-Hai area[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(11): 112-115.
10 苏媛,刘浩,徐杨,等.轴流式玉米脱粒装置钉齿元件优化与试验[J].农业机械学报,2018,49(): 258-265.
Su Yuan, Liu Hao, Xu Yang, et al. Optimization and test of axial flow corn threshing device pin tooth element[J]. Journal of Agricultural Machinery, 2018, 49(Sup.1): 258-265.
11 邸志峰,崔中凯,张华,等.纹杆块与钉齿组合式轴流玉米脱粒滚筒的设计与试验[J].农业工程学报,2018,34(1): 28-34.
Di Zhi-feng, Cui Zhong-kai, Zhang Hua, et al. Design and experiment of axial flow corn threshing drum with grain bar block and nail tooth combination[J]. Journal of Agricultural Engineering, 2018, 34(1): 28-34.
12 王志明. 横置差速轴流脱分选系统工作机理及设计研究[D]. 西安: 长安大学工程机械学院, 2017.
Wang Zhi-ming. Research on working mechanism and design of transverse differential axial flow separation system[D]. Xi'an: School of Construction Machinery, Chang'an University, 2017.
13 周海玲.玉米果穗物理力学性质研究及脱粒过程仿真分析[D]. 长春: 吉林大学生物与农业工程学院,2013.
Zhou Hai-ling. The physical and mechanical property research of corn ears and simulated analysis of corn threshing progress[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2013.
14 高连兴,李飞,张新伟,等.含水率对种子玉米脱粒性能的影响机理[J].农业机械学报, 2011,42(12): 92-96.
Gao Lian-xing, Li Fei, Zhang Xin-wei, et al. Mechanism of moisture content affect on corn seed thresing[J]. Transactions ofthe Chinese Society for Agricultural Machinery, 2011, 42(12): 92-96.
15 虞顺成,李耀明,马征,等.玉米籽粒直收中籽粒及穗轴破损形态研究[J].农机化研究,2019,41(10): 208-212.
Yu Shun-cheng, Li Yao-ming, Ma Zheng, et al. Study on damage of corn kernel and cob in corn kernel harvesting[J]. Journal of Agricultural Mechanization Research, 2019, 41(10): 208-212.
16 屈哲. 低损伤组合式玉米脱粒分离装置的研究[D]. 北京: 中国农业大学工学院,2018.
Qu Zhe.Research on combined maize threshing and separating device with low damade[D]. Beijing: College of Engineering, China Agricultural University, 2018.
17 相茂国,张道林,李春宁,等. 影响玉米脱粒性能的因素分析与研究[J].农机化研究,2015,37(1): 188-191.
Xiang Mao-guo, Zhang Dao-lin, Li Chun-ning,et al. Analysis of influence factor on corn threshing performance[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 188-191.
18 周海玲.玉米果穗物理力学性质研究及脱粒过程仿真分析[D].长春: 吉林大学生物与农业工程学院,2013.
Zhou Hai-ling. The physical and mechanical property research of corn ears and simulated analysis of corn threshing progress[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2013.
19 虞顺成.玉米脱粒过程中的籽粒破损试验与分析[D]. 镇江: 江苏大学农业工程学院, 2019.
Yu Shun-cheng. Corn kernel damage test and analysis of corn threshing process[D]. Zhenjiang: College of Agricultural Engineering, Jiangsu University, 2019.
20 李心平,熊师,耿令新,等.含水率对玉米果穗抗压特性的影响[J].农业工程学报, 2018, 34(2): 25-31.
Li Xin-ping, Xiong Shi, Geng Ling-xin, et al. Effect of moisture content on compressive properties of corn ear[J]. Journal of Agricultural Engineering, 2018, 34(2): 25-31.
21 Srivastava A K, Goering C E, Rohrbach R P, et al. Engineering Principles of Agricultural Machines[M]. 2nd ed. Michigan: Michigan State University Press, 1993.
22 Pužauskas E, Steponavičius D, Jotautienė E, et al. Substantiation of concave crossbar shape for corn ear threshing[J]. Mechanika, 2017, 22(6): 553-561.
23 Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshing process[J]. Biosystems Engineering, 2008, 99(4): 532-539.
24 Petkevichius S, Shpokas L, Steponavicius D. Substantiation of technology parameter of wet maize ear threshing[J]. Agronomy Research: Special Issue, 2008, 6: 271-280.
25 付君,张屹晨,程超,等.刚柔耦合式小麦脱粒弓齿设计及试验[J].吉林大学学报: 工学版, 2020, 50(2): 730-738.
Fu Jun, Zhang Yi-chen, Cheng Chao,et al. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
26 钱震杰, 金诚谦, 袁文胜, 等. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报: 工学版, 2021, 51(3): 1121-1130.
Qian Zhen-jie, Jin Cheng-qian, Yuan Wen-sheng, et al. Frictional impact dynamics model of threshing process between flexible teeth and grains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1121-1130.
27 陈美舟, 徐广飞, 王传旭, 等. 纵轴流辊式组合玉米柔性脱粒分离装置设计与试验[J]. 农业机械学报, 2020, 51(10): 123-131.
Chen Mei-zhou, Xu Guang-fei, Wang Chuan-xu, et al. Design and experiment of longitudinal axial flow roller combined corn flexible threshing and separation device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 123-131.
28 王占滨, 王振伟, 张银平, 等. 纵轴流柔性锤爪式玉米脱粒装置设计与试验[J]. 农业机械学报, 2020, 51(): 109-117.
Wang Zhan-bin, Wang Zhen-wei, Zhang Yin-ping, et al. Design and experiment of longitudinal axial flow flexible hammer claw corn threshing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.2): 109-117.
29 耿端阳, 何珂, 王骞, 等. 横轴流式玉米柔性脱粒装置设计与试验[J]. 农业机械学报, 2019, 50(3): 101-108.
Geng Duan-yang, He Ke, Wang Qian, et al. Design and experiment of horizontal axial flow corn flexible threshing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (3): 101-108.
30 耿端阳, 谭德蕾, 于兴瑞, 等. 玉米柔性脱粒滚筒脱粒元件设计与试验[J]. 吉林大学学报: 工学版, 2020, 50(5): 1923-1933.
Geng Duan-yang, Tan De-lei, Yu Xing-rui, et al. Design and test of corn flexible threshing cylinder element[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1923-1933.
31 中国农业机械化科学研究院.农业机械设计手册(上册)[M]. 北京: 中国农业科学技术出版社,2007.
32 赵东元.可靠性工程与应用[M]. 北京: 国防工业出版社, 2009.
[1] 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
[2] 王永烁,康建明,彭强吉,陈英凯,方会敏,牛萌萌,王少伟. 果树株间避障除草机设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2410-2420.
[3] 吕锋,李念,冯壮壮,张杨航. 面向用户的个性化产品服务系统协同过滤推介方法[J]. 吉林大学学报(工学版), 2023, 53(7): 1935-1942.
[4] 谢守勇,张小亮,刘凡一,刘军,苑晓亮,刘伟,王鹏. 基于钵苗力学特性取投苗装置动力学分析与试验[J]. 吉林大学学报(工学版), 2023, 53(11): 3293-3304.
[5] 王斌,何丙辉,林娜,王伟,李天阳. 基于随机森林特征选择的茶园遥感提取[J]. 吉林大学学报(工学版), 2022, 52(7): 1719-1732.
[6] 耿端阳,孙延成,牟孝栋,张国栋,姜慧新,朱俊科. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 693-702.
[7] 温昌凯,谢斌,宋正河,韩建刚,杨倩雯. 拖拉机耐久性加速结构试验设计方法[J]. 吉林大学学报(工学版), 2022, 52(3): 703-715.
[8] 王国伟,朱庆辉,于海业,黄东岩. 基于数字化农机装备的青贮饲料可追溯系统[J]. 吉林大学学报(工学版), 2022, 52(1): 242-252.
[9] 耿端阳,牟孝栋,张国栋,王宗源,朱俊科,徐海刚. 小麦联合收获机清选机理分析与优化试验[J]. 吉林大学学报(工学版), 2022, 52(1): 219-230.
[10] 梁方,王德成,尤泳,王光辉,王宇兵,张晓明,冯金奎. 草地切根施肥补播复式改良机设计与试验[J]. 吉林大学学报(工学版), 2022, 52(1): 231-241.
[11] 王新彦,江泉,吕峰,易政洋. 基于参数化模型的零转弯半径割草机侧翻稳定性[J]. 吉林大学学报(工学版), 2021, 51(5): 1908-1918.
[12] 钱震杰,金诚谦,袁文胜,倪有亮,张光跃. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报(工学版), 2021, 51(3): 1121-1130.
[13] 程超,付君,陈志,任露泉. 玉米籽粒收获机清选筛堵塞规律及脱附试验[J]. 吉林大学学报(工学版), 2021, 51(2): 761-771.
[14] 丛茜,徐金,马博帅,张晓超,陈廷坤. 基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J]. 吉林大学学报(工学版), 2021, 51(2): 754-760.
[15] 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .