吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1657-1664.doi: 10.13229/j.cnki.jdxbgxb.20220856

• 交通运输工程·土木工程 • 上一篇    

斜撑布设方案对高支模抗倒塌性能的影响

高欣1,2(),何舰1,兰春光2,王泽强2   

  1. 1.吉林大学 建设工程学院,长春 130021
    2.北京市建筑工程研究院有限责任公司,北京 100039
  • 收稿日期:2022-07-05 出版日期:2024-06-01 发布日期:2024-07-23
  • 作者简介:高欣(1980-),男,副教授,博士.研究方向:结构健康监测与安全评定.E-mail:gao_xin@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51208224);北京市自然科学基金项目(8192017)

Influence of diagonal brace layout scheme on collapse resistance of high formwork

Xin GAO1,2(),Jian HE1,Chun-guang LAN2,Ze-qiang WANG2   

  1. 1.College of Construction Engineering,Jilin University,Changchun 130021,China
    2.Beijing Construction Engineering Research Institute Co. ,Ltd. ,Beijing 100039,China
  • Received:2022-07-05 Online:2024-06-01 Published:2024-07-23

摘要:

基于LS-DYNA对比分析了对称式矩阵型、对称式梅花型、螺旋式矩阵型和螺旋式梅花型共4种斜撑布设方案对高支模极限承载能力与立杆破坏规律的影响;采用变换荷载路径法(AP法),研究了关键性立杆突然失效情况下,高支模动力响应规律;结合位移比法与应力比法,评估了高支模抗倒塌能力。结果表明:极限承载力按照从大到小排序为,螺旋式梅花型、对称式梅花型、螺旋式矩阵型、对称式矩阵型;对称式布设方案中的Ⅰ型立杆底层最先发生破坏,而螺旋式架体初始失稳立杆的具体位置没有规律;高支模抗倒塌能力按照从大到小排序为,螺旋式梅花型、对称式梅花型、对称式矩阵型、螺旋式矩阵型。

关键词: 建筑结构, 盘扣式支撑体系, 斜撑搭设, 极限承载力, 倒塌规律, 抗连续倒塌, 动力响应

Abstract:

Based on LS-DYNA, the influence of four kinds of diagonal bracing layout schemes of symmetric matrix type, symmetric plum blossom type, spiral matrix type and spiral plum blossom type on the ultimate bearing capacity of high formwork and the failure law of vertical rods was compared and analyzed. The dynamic response law of high formwork under sudden failure of key vertical rods was studied by using the transformed load path method (AP method). The collapse resistance of high formwork was evaluated by combining displacement ratio method and stress ratio method. The results show that compared with the ultimate bearing capacity, spiral plum blossom type>symmetrical plum blossom type>spiral matrix type>symmetrical matrix type. In the symmetrical layout scheme, the bottom layer of the Ⅰ-type vertical rods is destroyed first, and the specific position of the initial instability vertical rods of the spiral frame is irregular. Comparison of collapse resistance of high formwork, spiral plum blossom type>symmetrical plum blossom type>symmetrical matrix type>spiral matrix type.

Key words: building structure, disc-buckle support system, inclined bracing erection, ultimate bearing capacity, collapse law, resistance to progressive collapse, dynamic response

中图分类号: 

  • TU318

表1

有限元模型参数"

构件类型单元类型单元截面/mm弹性模量/MPa密度/(kg?m-3)泊松比屈服应力/MPa
立杆BEAM161?60×3.22.06×1057.8×1030.3345
水平杆BEAM161?48×2.52.06×1057.8×1030.3235
斜撑LINK160?42.8×2.52.06×1057.8×1030.3235
顶部模板SHELL16340(厚)8.00×1036.0×1020.33120

图1

立杆材料本构模型"

图2

斜撑竖向搭设与平面布设方案示意图"

图3

LS-DYNA模型示意图"

图4

立杆编号示意图"

图5

4种架体初始失稳立杆荷载位移曲线图"

表2

架体极限承载力"

斜撑搭设

工况

对称式矩阵型对称式梅花型螺旋式矩阵型螺旋式梅花型
极限承载力/ KN45.754846.0548.45

表3

4种架体初始失稳立杆相关参数"

架体类型立杆编号失稳位置/层失稳时间/s最大水平位移/mm最大单元应力/MPa
对称式矩阵型14#(I型立杆)11.52521.17356.05
对称式梅花型62#(I型立杆)11.60029.97413.64
螺旋式矩阵型50#11.53527.12354.01
螺旋式梅花型58#11.61537.25421.50

图6

对称式矩阵型架体第1层立杆单元轴力时程曲线"

图7

对称式矩阵型架体第7层立杆单元轴力时程曲线"

图8

螺旋式矩阵型架体第1层立杆单元轴力时程曲线"

图9

螺旋式矩阵型架体第7层立杆单元轴力时程曲线"

图10

架体抗连续倒塌能力分析步骤"

图11

关键立杆拆除处荷载时程曲线"

图12

14#立杆失效位置处位移时程曲线图"

图13

13#立杆应力时程曲线图"

表4

关键性杆件失效位置处位移最大增长率"

架体类型立杆编号初始稳定位移/mm最大位移/mm位移最大增长率/%
对称式矩阵型14#(I型立杆)0.7983.32316.04
对称式梅花型62#(I型立杆)0.9612.74185.12
螺旋式矩阵型50#0.5422.58376.01
螺旋式梅花型58#1.0602.68152.83

表5

关键性杆件相邻立杆应力最大增长率"

架体类型立杆编号

初始稳定

应力/mm

最大应力/mm应力最大增长率/%

对称式

矩阵型

5#78.412154.34
6#68.510160.58
13#57.410379.44

对称式

梅花型

53#86.510420.23
54#52.571.235.62
61#59.785.543.22

螺旋式

矩阵型

49#47.186.784.08
57#54.497.479.04
58#57.396.568.41

螺旋式

梅花型

49#66.976.414.2
50#41.751.323.02
57#67.285.126.64
1 时炜. 承插型盘扣式脚手架在高大模板支撑中的应用[J]. 建筑施工,2005,37(9):1091-1093.
Shi Wei. Application of bell-sigot bearing-insertion scaffold to high and large formwork support system[J]. Building Construction, 2005, 37(9): 1091-1093.
2 葛元辉. 高支模施工技术在房建土建工程中的应用研究[J]. 施工技术,2021,48(7):30-32.
Ge Yuan-hui. Research on the application of high formwork construction technology in housing construction and civil engineering[J]. Construction Technology, 2021, 48(7):30-32.
3 孙世梅. 2010~2016年建筑施工脚手架坍塌事故统计分析[J]. 吉林建筑大学学报, 2018, 35(4):33-36.
Sun Shi-mei. Statistical analysis of collapse accidents of construction scaffolding in 2010~2016[J]. Journal of Jilin Jianzhu University, 2018, 35(4): 33-36.
4 庄金平,蔡雪峰,郑永乾,等. 高大模板扣件式钢管支撑系统整体受力性能研究[J]. 土木工程学报, 2016, 49(10): 57-63, 87.
Zhuang Jin-ping, Cai Xue-feng, Zheng Yong-qian, et al. Study on the overall stability of high and large formwork support system with fastening style steel pipe[J]. China Civil Engineering Journal, 2016, 49(10): 57-63, 87.
5 龚照森. 扣件式钢管模板支架抗连续性倒塌理论分析[D]. 重庆: 重庆大学土木工程学院, 2013.
Gong Zhao-sen. Theoretical study about resisting progressive collapse of fastener steel tubular formwork supports[D]. Chongqing: College of Civil Engineering, Chongqing University, 2013.
6 韩源彬. 盘扣式模板支撑架承载性能研究与应用[D]. 北京: 清华大学土木工程系, 2018.
Han Yuan-bin. Research and application on load-bearing capacity of socket plate fastener type scaffold [D]. Beijing: Department of Civil Engineering, Tsinghua University, 2018.
7 刘莉,王萌,吴金国,等. 现浇混凝土模板体系可调支托伸出长度[J]. 沈阳建筑大学学报:自然科学版, 2015, 31(3): 466-473.
Liu Li, Wang Meng, Wu Jin-guo, et al. Study on the extended length of adjustable bearing bracket in cast-inplace concrete formwork system[J]. Journal of Shenyang Jianzhu University (Natural Science), 2015, 31(3): 466-473.
8 袁庆凯. 扣件式满堂支撑体系垮塌机理数值模拟[D]. 秦皇岛: 燕山大学建筑工程与力学学院, 2015.
Yuan Qing-kai. The numerical simulation on collapse mechanism of fastener type full framing support system[D]. Qinghuangdao: School of Civil Engineering and Mechanics, Yanshan University, 2015.
9 唐柱才. 应用有限元程序ANSYS/LS-DYNA进行结构的屈曲模拟[J]. 化工装备与技术, 2004, 25(3): 27-31.
Tang Zhu-cai. The finite element program ANSYS/LS-DYNA was used to simulate the buckling of the structure[J]. Chemical Equipment and Technology, 2004, 25(3): 27-31.
10 周潭飞. 盘扣式钢管模板支撑架稳定承载力研究[D]. 西安: 西安建筑科技大学建筑与土木工程学院, 2019.
Zhou Tan-fei. Study on stability bearing capacity of disc-fastened steel tube formwork supporting frame [D]. Xi'an: School of Architecture and civil Engineering, Xi'an University of Architecture and Technology, 2019.
11 , 建筑施工承插型盘扣式钢管支架安全技术规程 [S].
12 刘成清. ANSYS/LS-DYNA工程结构抗震、抗撞击与抗连续倒塌分析[M]. 北京:中国建筑工业出版社, 2014.
13 陈桂香,郭泽群,胡德平,等. 承插型盘扣式钢管支架盘扣节点扭矩-转角模型适用性研究[J]. 西安建筑科技大学学报:自然科学版, 2020, 52(2): 192-199.
Chen Gui-xiang, Guo Ze-qun, Hu De-ping, et al. Study on applicability of torque-rotation model of disk-pin joint node of disk lock steel tubular scaffold [J]. Journal of Xi'an University of Architecture and Technology. (Natural Science Edition), 2020, 52(2): 192-199.
14 李晓旭. 盘扣式支架单根立杆竖向承载性能的研究与应用[D]. 合肥: 安徽建筑大学土木工程学院, 2020.
Li Xiao-xu. Research and application of vertical bearing capacity of single upright of disc button bracket [D]. Hefei: College of Civil Engineering, Anhui Jianzhu University, 2020.
15 胡晓斌. 单层平面钢框架连续倒塌动力效应分析[J]. 工程力学, 2008, 25(6): 38-43.
Hu Xiao-bin. Dynamic effect analysis during progressive collapse of a single-story steel plane frame[J]. Engineering Mechanics, 2008, 25(6): 38-43.
16 江晓峰. 建筑结构连续性倒塌及其控制设计的研究现状[J]. 土木工程学报, 2008, 41(6): 1-8.
Jiang Xiao-feng. A review on the progressive collapse and control design of building structures[J]. China Civil Engineering Journal, 2008, 41(6): 1-8.
17 蔡建国. 大跨空间结构连续倒塌分析若干问题探讨[J]. 工程力学, 2012, 29(3): 143-149.
Cai Jian-guo. Discussion on the progressive collapse analysis of long-span space structures[J]. Engineering Mechanics, 2012, 29(3): 143-149.
18 张月强. 大跨度钢结构抗连续倒塌动力分析关键问题研究[J]. 建筑结构学报, 2014, 35(4): 49-56.
Zhang Yue-qiang. Study on key issues of dynamic analysis for anti-progressive collapse of large span steel structure[J]. Journal of Building Structures, 2014, 35(4): 49-56.
19 李海锋,郭小农,罗永峰,等. 索支撑柔性摩天轮结构抗倒塌性能分析[J]. 吉林大学学报:工学版, 2015, 45(2): 406-413.
Li Hai-feng, Guo Xiao-nong, Luo Yong-feng, et al. Collapse resistance behavior of Ferris wheel with stay cables[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2): 406-413.
[1] 邸振勇,杨新辉. 地震后建筑结构层间变形特征分布[J]. 吉林大学学报(工学版), 2024, 54(5): 1377-1384.
[2] 韩智强,谢刚,卓亚娟,骆佐龙,李华腾. 基于车轮-桥面相干激励的大跨连续梁桥振动响应[J]. 吉林大学学报(工学版), 2024, 54(2): 436-444.
[3] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
[4] 韩智强,谢刚,周勇军,刘世忠,晋民杰. 曲线桥梁车桥耦合振动数值分析方法[J]. 吉林大学学报(工学版), 2023, 53(2): 515-522.
[5] 陈俊,王韶纤,胥卉,莫端泉,霍静思,邓旭华. 负弯矩作用下可拆卸预制装配式组合梁力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 604-614.
[6] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[7] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[8] 宫亚峰,宋加祥,谭国金,毕海鹏,刘洋,单承新. 多车桥梁动态称重算法[J]. 吉林大学学报(工学版), 2021, 51(2): 583-596.
[9] 尼颖升, 孙启鑫, 马晔, 徐栋. 基于拉应力域的波形钢腹板组合梁承载力配筋计算[J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[10] 张云龙, 刘占莹, 吴春利, 王静. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[11] 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[12] 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[13] 王春刚, 张壮南, 赵大千, 曹宇飞. 腹板开孔Σ形复杂卷边槽钢轴压承载力试验[J]. 吉林大学学报(工学版), 2015, 45(3): 788-796.
[14] 李海锋,郭小农,罗永峰,高轩能. 索支撑柔性摩天轮结构抗倒塌性能分析[J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
[15] 云迪, 刘贺, 张素梅. 中承式钢管混凝土拱桥弹塑性地震时程分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1633-1638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!