吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1601-1611.doi: 10.13229/j.cnki.jdxbgxb.20230095
• 交通运输工程·土木工程 • 上一篇
刘子玉1,2(),陈士通1,2,3(),支墨墨1,2,3,黄晓明4,陈哲心5
Zi-yu LIU1,2(),Shi-tong CHEN1,2,3(),Mo-mo ZHI1,2,3,Xiao-ming HUANG4,Zhe-xin CHEN5
摘要:
研发了一种可“临-永”转换的抢修钢墩,基于ABAQUS三维仿真模拟,首先通过极限承载力因素影响分析确定主材选型;在此基础上,开展钢墩非损伤及损伤状态结构极限承载力研究。结果表明:钢墩极限承载力随支墩径厚比增大而减小,随钢材强度等级提高而增大;钢墩损伤位置相同时,损伤程度越深,极限荷载系数越敏感;钢墩损伤程度相同时,损伤位置越靠近下方,对极限荷载系数的影响越显著;节段局部损伤时,相较于材料刚度退化,随着折减系数的变化,截面尺寸缩减和材料强度退化对极限荷载系数的影响趋势相近、程度相当,且影响更加明显;节段整体损伤时,截面尺寸缩减影响最大,材料强度退化次之,材料刚度退化最小。
中图分类号:
1 | 张瞩熹. 铁路桥梁抢修器材应急保障能力现状与思考[J]. 国防交通工程与技术, 2020, 18(6): 30-33. |
Zhang Zhu-xi. My reflection on the current situation of the emergency support capability of rush-repair equipment of railway bridges[J]. Traffic Engineering and Technology for National Defence, 2020, 18(6): 30-33. | |
2 | 陈士通, 刘子玉, 支墨墨. 中国桥墩抢修器材现状及思考[J]. 铁道技术标准: 中英文, 2022, 4(11): 14-19. |
Chen Shi-tong, Liu Zi-yu, Zhi Mo-mo. Current situation and thinking on rush-repair equipment for bridge piers in China[J]. Railway Technical Standard(Chinese & English), 2022, 4(11): 14-19. | |
3 | 刘子玉, 陈士通, 支墨墨. “临-永”转换抢修钢墩应急使用结构稳定因素影响研究[C]∥第31届全国结构工程学术会议, 南宁, 中国,2022: 176-185. |
4 | 杨绿峰, 赵玉峰, 解威威. 方形钢管混凝土框架二阶效应下极限承载力的高效线弹性迭代分析[J]. 土木工程学报, 2022, 55(2): 1-10. |
Yang Lü-feng, Zhao Yu-feng, Xie Wei-wei. Linear elastic iteration with high efficiency for ultimate bearing capacity of square-profile CFST frame with second order effect[J]. China Civil Engineering Journal, 2022, 55(2): 1-10. | |
5 | Iman M. The old derrick steel truss structure in linear buckling analysis(eigenvalue)[J]. IOP Conference Series: Earth and Environmental Science, 2021, 832(1): No.12027. |
6 | Aziz H Y, Sultan H K, Abbas B J. Simulation and style design of bridge stability supported on large diameter piles[J]. MMEP, 2021, 8(6): 961-966. |
7 | Khaled O, Kathryn F, Deniel P, et al. An in vitro evaluation of resonant frequency analysis to measure fixed bridge stability[J]. BDJ Open, 2015, 1(1): No.15001. |
8 | 钟昌均, 王忠彬, 柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报: 工学版, 2021, 51(6): 2068-2078. |
Zhong Chang-jun, Wang Zhong-bin, Liu Chen-yang. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2068-2078. | |
9 | Song Guo-hua, Li Ming-hui, Che De-lu. Geometrically nonlinear stability of curved continuous rigid frame bridges with initial high pier imperfections at largest cantilever stage[J]. International Journal of Engineering and Technology, 2019, 11(1): 16-22. |
10 | 双超, 周东华, 陈旭, 等. 圆形截面柱二阶承载力的简便计算方法[J]. 吉林大学学报: 工学版, 2020, 50(6): 2178 -2185. |
Shuang Chao, Zhou Dong-hua, Chen Xu, et al. Simplified calculation method for second-order bearing capacity of circular section columns[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2178-2185. | |
11 | 王钧利, 贺拴海. 高墩大跨径弯桥在悬臂施工阶段刚构的非线性稳定分析[J]. 交通运输工程学报, 2006(2): 30-34. |
Wang Jun-li, He Shuan-hai. Nonlinear stability analysis of long-span curve bridge with high piers during cantilever construction[J]. Traffic and Transportation Engineering, 2006(2): 30-34. | |
12 | 施洲, 张勇, 张育智, 等. 大跨度铁路下承式钢桁梁柔性拱桥稳定性研究[J]. 中国铁道科学, 2019, 40(4): 52-58. |
Shi Zhou, Zhang Yong, Zhang Yu-zhi, et al. Study on stability of long-span railway through bridge with steel truss girder and flexible arch[J]. China Railway Science, 2019, 40(4): 52-58. | |
13 | 王紫超, 杨切. 两节段装配式钢筋混凝土桥墩受压极限承载力研究[J]. 中国港湾建设, 2022, 42(7): 17-22. |
Wang Zi-chao, Yang Qie. Research on ultimate bearing capacity of two segment prefabricated reinforced concrete pier under compression[J]. China Harbour Engineering, 2022, 42(7): 17-22. | |
14 | 顾森华. 混凝土薄壁高墩桥梁结构的稳定性分析及试验研究[D]. 杭州: 浙江大学建筑工程学院, 2008. |
Gu Sen-hua. Experimental research and stability analysis on structure of concrete thin wall-high pier bridge[D]. Hangzhou: School of Civil Engineering, Zhejiang University, 2008. | |
15 | 熊志洪. 钢管混凝土叠合柱高墩极限承载力有限元分析[D]. 杭州: 浙江工业大学建筑工程学院, 2012. |
Xiong Zhi-hong. The analysis of the ultimate bearing capacity of concrete filled steel tubular columns high pier[D]. Hangzhou: School of Civil Engineering, Zhejiang University of Technology, 2012. | |
16 | 李海青, 杨万里, 高璇. 预应力混凝土薄壁高墩刚构桥梁极限承载力分析[J]. 中国公路学报, 2013, 26(6): 128-134. |
Li Hai-qing, Yang Wan-li, Gao Xuan. Analysis of ultimate bearing capacity of pre-stressed concrete frame bridge with high piers[J]. China Journal of Highway and Transport, 2013, 26(6): 128-134. | |
17 | 薛鹏飞, 吴光宇, 汪劲丰. 考虑非线性行为的PC结构桥梁极限承载力分析[J]. 公路, 2011(3): 50-54. |
Xue Peng-fei, Wu Guang-yu, Wang Jin-feng. Ultimate bearing capacity analysis of PC structure bridges considering nonlinear behavior[J]. Highway, 2011(3): 50-54. | |
18 | Das D, Ayoub A. Mixed formulation for geometric and material nonlinearity of shear-critical reinforced concrete columns[J]. Engineering Structures, 2021, 229:No.11587. |
19 | 崔苗苗. 铁路钢桁梁柔性拱桥极限承载力分析研究[D]. 成都: 西南交通大学土木工程学院, 2011. |
Cui Miao-miao. Analysis on ultimate carrying capacity of steel truss beam and flexible arch railway bridge[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2011. | |
20 | 赵曼, 陈士通, 孙志星, 等. 128 m大跨度铁路应急钢桁梁极限荷载[J]. 中国铁道科学, 2021, 42(5): 85-93. |
Zhao Man, Chen Shi-tong, Sun Zhi-xing, et al. Ultimate load of 128 m large span railway emergency steel truss girder[J]. China Railway Science, 2021, 42(5): 85-93. | |
21 | . 铁路桥涵设计规范 [S]. |
[1] | 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600. |
[2] | 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565. |
[3] | 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380. |
[4] | 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111. |
[5] | 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495. |
[6] | 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816. |
[7] | 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873. |
[8] | 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652. |
[9] | 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107. |
[10] | 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078. |
[11] | 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755. |
[12] | 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762. |
[13] | 高凯,刘纲. 全局临界强度分枝-约界法的有效强度改进[J]. 吉林大学学报(工学版), 2021, 51(2): 597-603. |
[14] | 宫亚峰,宋加祥,谭国金,毕海鹏,刘洋,单承新. 多车桥梁动态称重算法[J]. 吉林大学学报(工学版), 2021, 51(2): 583-596. |
[15] | 孔庆雯,谭国金,王龙林,王勇,魏志刚,刘寒冰. 基于有限元方法的裂缝箱梁桥自振特性分析[J]. 吉林大学学报(工学版), 2021, 51(1): 225-232. |
|