吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 2886-2896.doi: 10.13229/j.cnki.jdxbgxb.20220124

• 交通运输工程·土木工程 • 上一篇    下一篇

基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟

戴理朝(),周亮,杨晓文,王磊()   

  1. 长沙理工大学 土木工程学院,长沙 410114
  • 收稿日期:2022-01-26 出版日期:2023-10-01 发布日期:2023-12-13
  • 通讯作者: 王磊 E-mail:lizhaod@csust.edu.cn;leiwang@csust.edu.cn
  • 作者简介:戴理朝(1989-),男,副教授,博士.研究方向:桥梁耐久性.E-mail: lizhaod@csust.edu.cn
  • 基金资助:
    国家自然科学基金项目(52008035);湖南省重点领域研发计划项目(2019SK2171);湖南省自然科学基金项目(2020RC4024)

Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element

Li-zhao DAI(),Liang ZHOU,Xiao-wen YANG,Lei WANG()   

  1. School of Civil Engineering,Changsha University of Science and Technology,Changsha 410114,China
  • Received:2022-01-26 Online:2023-10-01 Published:2023-12-13
  • Contact: Lei WANG E-mail:lizhaod@csust.edu.cn;leiwang@csust.edu.cn

摘要:

结合随机骨料模型建立了锈蚀钢筋混凝土(RC)梁三维细观数值模型,采用Connector单元捕捉加载过程中界面相互作用变化的方法。利用已有试验数据验证了该模型的合理性。分析了加载过程中锈蚀RC梁界面粘结滑移分布以及变形协调系数的变化规律,探讨了界面粘结退化对RC梁抗弯承载力的影响。研究结果表明:采用Connector单元能描述加载过程中粘结应力以及相对滑移等界面行为的变化,可作为锈蚀钢筋-混凝土界面行为模拟的有效手段;界面的最大粘结应力随锈蚀率的增加而降低,30%的锈蚀率使得极限荷载下RC梁界面最大粘结应力下降71%;锈蚀会加剧荷载作用下锈蚀RC梁界面的相对滑移,界面相对滑移峰值位置由加载点逐渐向剪弯段区域转移;锈蚀会减小界面极限变形协调系数,锈蚀率达到30%时,极限变形协调系数为0.479,抗弯承载力下降55%。

关键词: 结构工程, 锈蚀RC梁, 粘结滑移, 变形协调系数, 细观数值模拟

Abstract:

A three-dimensional meso-scale numerical model of corroded reinforced concrete(RC) beams was established by random aggregate model in the present study, and the connector element was used to capture the changes of interaction at the interface during loading. The rationality of the model was verified by experimental data. The interfacial bond-slip distribution and deformation coordination coefficient of corroded RC beams during the loading process were analyzed, and the effect of bond degradation on bearing capacity was discussed. Results show that the connector element can describe the bond stress and relative slip at the interface during the loading process, which is an effective method for simulating the interface behavior between corroded steel and concrete. The maximum bond stress at the interface decreases with increasing corrosion loss, a 30% of corrosion loss leads to a decrease of 71% in the maximum bond stress at the ultimate load. Corrosion can accelerate the relative slip at the interface of corroded RC beams, and the relative slip at the interface moves from the loading point position to the shear-flexure section. The ultimate deformation coordination coefficient at the interface decreases with the increase of corrosion loss. When the corrosion loss reaches 30%, the ultimate deformation coordination coefficient is 0.479, and the bearing capacity decreases by 55%.

Key words: structural engineering, corroded RC beams, bond-slip, deformation coordination coefficient, meso-scale numerical simulation

中图分类号: 

  • TU375.1

图1

RC梁三维细观数值模型"

图2

混凝土损伤-断裂本构模型"

图3

界面粘结-滑移本构模型[25]"

图4

Connector单元界面约束行为"

图5

Connector单元损伤演化规律"

表1

混凝土各细观组成及钢筋材料的力学参数"

参 数骨 料砂 浆ITZ主 筋箍筋及架立筋
弹性模量E/GPa70.032.530.0200.0200.0
泊松比ν0.20.20.20.30.3
抗拉强度ft/MPa/2.82.4//
抗压强度fc/MPa/36.530.5//
断裂能G/(J·m-2/50.030.0//
剪胀角ψ/(°)/18.015.0//
屈服强度fy///376.0274.4
极限强度fu///551.9399.4

图6

模型参数验证及构件破坏模式对比"

图7

模拟与试验的荷载-挠度曲线对比"

图8

粘结应力分布以及裂纹扩展"

图9

钢筋与混凝土界面相对滑移值"

图10

界面处Connector单元变形以及钢筋应力云图"

图11

加载过程中锈蚀RC构件界面变形协调系数"

图12

极限变形协调系数拟合曲线"

图13

不同锈蚀率下RC梁抗弯承载力变化"

1 王甲春, 阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报:工学版, 2014, 44(2):352-357.
Wang Jia-chun, Yan Pei-yu. Probabilistic analysis of rebar rust in concrete under marine environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2):352-357.
2 Hussein L. Analytical modeling of bond stress at steel-concrete interface due to corrosion[D]. Toronto: Ryerson University, 2011.
3 Pei P, Zheng S S, Zhang Y X, et al. Overview on the bonding of reinforced concrete under pristine, corrosive and freeze-thaw conditions[J]. Journal of Adhesion Science and Technology, 2019, 33(7): 761-789.
4 梁岩, 罗小勇, 肖小琼, 等. 锈蚀钢筋混凝土粘结滑移性能试验研究[J]. 工业建筑, 2012, 42(10):95-100.
Liang Yan, Luo Xiao-yong, Xiao Xiao-qiong, et al. Experimental study on bond-slip performance of corroded reinforced concrete[J]. Industrial Construction, 2012, 42(10):95-100.
5 Ma Y F, Guo Z Z, Wang L, et al. Experimental investigation of corrosion effect on bond behavior between reinforcing bar and concrete[J]. Construction and Building Materials, 2017, 152: 240-249.
6 Zhang X H, Wang L, Zhang J R, et al. Bond degradation-induced incompatible strain between steel bars and concrete in corroded RC beams[J]. Journal of Performance of Constructed Facilities, 2016, 30(6): No.04016058.
7 黄天立, 赵志彦, 宋力, 等. 纵筋锈蚀对钢筋混凝土梁抗剪性能影响的试验研究[J]. 中南大学学报:自然科学版, 2019, 50(8):1901-1911.
Huang Tian-li, Zhao Zhi-yan, Song Li, et al. Experimental investigation on shear performance of RC beams due to longitudinal reinforcement corrosion[J]. Journal of Central South University(Science and Technology), 2019, 50(8):1901-1911.
8 曹芙波, 尹润平, 王晨霞, 等. 锈蚀钢筋再生混凝土梁粘结性能及承载力研究[J]. 土木工程学报, 2016, 49():14-19.
Cao Fu-bo, Yin Run-ping, Wang Chen-xia, et al. Research on bond performance and bend strength of corroded reinforced recycled concrete beams[J]. China Civil Engineering Journal, 2016, 49(Sup.2):14-19.
9 薛昕, 杨成, 张瀚引, 等. 钢筋黏结退化的空间分布对RC梁受剪性能影响[J]. 华中科技大学学报:自然科学版, 2017, 45(1):11-16.
Xue Xin, Yang Cheng, Zhang Han-yin, et al. Influence of spatial distribution of bond deterioration in steel bar on shear performance of RC beams[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(1):11-16.
10 Nilson A H. Nonlinear analysis of reinforced concrete by the finite element method[J]. Journal Proceedings, 1968,65(9): 757-766.
11 陈朝晖, 雷婷婷, 廖旻懋, 等. 基于内聚力模型的锈蚀砼梁抗弯刚度[J]. 重庆大学学报, 2017, 40(5):36-42.
Chen Zhao-hui, Lei Ting-ting, Liao Min-mao, et al. Numerical study on the stiffness of corroded beam based on the cohesive model[J]. Journal of Chongqing University, 2017, 40(5):36-42.
12 Xiong X Y, Xiao Q S. Meso-scale simulation of bond behaviour between retarded-bonded tendons and concrete[J]. Engineering Structures, 2021, 228:No. 111410.
13 Verwaerde R, Guidault P, Boucard P A. A non-linear finite element connector model with friction and plasticity for the simulation of bolted assemblies[J]. Finite Elements in Analysis and Design, 2021, 195: No.103586.
14 Zhao G Q. Etude expérimentale et numérique de la résistance à l'effondrement progressif de sous-assemblages poteaux-poutres en béton armé[D]. Grenoble: Université Grenoble Alpes (ComUE), 2019.
15 Li C Q, Yang S T, Saafi M. Numerical simulation of behavior of reinforced concrete structures considering corrosion effects on bonding[J]. Journal of Structural Engineering, 2014, 140(12): No.04014092.
16 Dai L Z, Long D X, Wang L. Meso-scale modeling of concrete cracking induced by 3D corrosion expansion of helical strands[J]. Computers & Structures, 2021, 254: No.106615.
17 Jin L, Wang T, Jiang X A, et al. Size effect in shear failure of RC beams with stirrups: simulation and formulation[J]. Engineering Structures, 2019, 199: No. 109573.
18 Wriggers P, Moftah S. Mesoscale models for concrete: Homogenisation and damage behaviour[J]. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.
19 Song Z H, Lu Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data[J]. International Journal of Impact Engineering, 2012, 46: 41-55.
20 Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
21 金浏, 陆凯, 宋博, 等. 考虑骨料粒径影响的BFRP筋混凝土梁剪切破坏及尺寸效应[EB/OL]. [2021-06-07].
22 金浏, 李炎锡, 张仁波, 等. 锈蚀钢筋混凝土柱偏心受压性能精细化模拟[EB/OL]. [2022-04-12].
23 Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams: modeling guidelines[J]. Journal of Structural Engineering, 2004, 130(8): 1214-1224.
24 Zandi Hanjari K, Kettil P, Lundgren K. Analysis of mechanical behavior of corroded reinforced concrete structures[J]. ACI Structural Journal, 2011, 108(5): 532-541.
25 .混凝土结构设计规范 [S].
26 Lee H S, Cho Y S. Evaluation of the mechanical properties of steel reinforcement embedded in concrete specimen as a function of the degree of reinforcement corrosion[J]. International Journal of Fracture, 2009, 157(1): 81-88.
27 Ma Y F, Zhang J R, Wang L, et al. Probabilistic prediction with Bayesian updating for strength degradation of RC bridge beams[J]. Structural Safety, 2013, 44: 102-109.
28 CEB-FIP. Model code [S].
29 狄生林. 钢筋混凝土梁的非线性有限元分析[J]. 东南大学学报:自然科学版, 1984, 24(2):87-96.
Di Sheng-lin. Nonlinear finite element analysis of reinforced concrete beam[J]. Journal of Southeast University(Natural Science Edition), 1984, 24(2):87-96.
[1] 范亮,徐英铭,谭阳. 集束群钉式装配组合梁界面滑移计算[J]. 吉林大学学报(工学版), 2023, 53(9): 2533-2541.
[2] 樊学平,周衡,刘月飞. 桥梁时变可靠性的多过程贝叶斯动态混合预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2332-2338.
[3] 毛亚娜,刘世忠,杏剑,杨华,焦峪波. 超高性能玻璃砂混凝土-高强钢筋粘结滑移特性及其声发射参数表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1686-1694.
[4] 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832.
[5] 熊二刚,巩忠文,罗佳明,范团结. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104.
[6] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[7] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[8] 褚云朋,孙鑫晖,李明,姚勇,黄汉杰. 下击暴流作用下圆形马鞍面屋盖风压特性[J]. 吉林大学学报(工学版), 2022, 52(8): 1826-1833.
[9] 姚勇,苏留锋,李明,褚云朋,黄汉杰. 下击暴流作用下双面球壳型屋面风载特性[J]. 吉林大学学报(工学版), 2022, 52(3): 615-625.
[10] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[11] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[12] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[13] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
[14] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
[15] 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!