吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1634-1642.doi: 10.13229/j.cnki.jdxbgxb.20220904

• 交通运输工程·土木工程 • 上一篇    

球扁钢肋钢纤维混凝土组合桥面板正弯矩受力性能试验

张春雷1(),邵长宇2,3,苏庆田1,3,戴昌源2,3()   

  1. 1.同济大学 土木工程学院,上海 200092
    2.上海市政工程设计研究总院(集团)有限公司,上海 200092
    3.上海高性能组合结构桥梁工程技术研究中心,上海 200092
  • 收稿日期:2022-07-18 出版日期:2024-06-01 发布日期:2024-07-23
  • 通讯作者: 戴昌源 E-mail:zhangchunlei_11@126.com;dai_cy@foxmail.com
  • 作者简介:张春雷(1980-),男,高级工程师,博士研究生.研究方向:钢桥与组合结构桥梁. E-mail:zhangchunlei_11@126.com

Experimental on positive bending behaviour of composite bridge decks with steel-fiber-reinforced concrete and longitudinal bulb-flat ribs

Chun-lei ZHANG1(),Chang-yu SHAO2,3,Qing-tian SU1,3,Chang-yuan DAI2,3()   

  1. 1.College of Civil Engineering,Tongji University,Shanghai 200092,China
    2.Shanghai Municipal Engineering Design Institute (Group) Co. ,Ltd. ,Shanghai 200092,China
    3.Shanghai Engineering Research Center of High Performance Composite Bridges,Shanghai 200092,China
  • Received:2022-07-18 Online:2024-06-01 Published:2024-07-23
  • Contact: Chang-yuan DAI E-mail:zhangchunlei_11@126.com;dai_cy@foxmail.com

摘要:

针对一种采用80 mm厚钢纤维混凝土(SFRC)和球扁钢纵肋的新型组合桥面板,设计制作了两个组合桥面板足尺模型,进行了正弯矩加载试验,测试得到加载全过程结构变形和应变变化情况。采用截面弹塑性截面分析方法、线弹性分析方法和刚塑性分析方法计算了正弯矩承载力,并与试验结果进行对比。研究结果表明:组合桥面板在承受正弯矩荷载时位移延性系数为4.90~5.77,具有较好的延性;在承载能力极限状态下,组合桥面板正弯矩承载力由球扁钢受力控制,SFRC具有充足的抗压强度,提高混凝土强度对正弯矩承载力影响很小;截面弹塑性分析能较为准确地计算正弯矩承载力,适合用于组合桥面板设计计算。

关键词: 桥梁工程, 组合桥面板, 正交异性钢桥面板, 钢纤维混凝土, 球扁钢加劲肋, 弯矩承载力

Abstract:

A composite bridge deck composed of 80 mm steel-fiber-reinforced concrete (SFRC) and longitudinal bulb-flat ribs was investigated by model tests. Two full-scale specimens were designed and fabricated. Positive bending tests were carried out and the variations of stiffness and structural strain during the loading process were obtained. The elastoplastic cross-sectional analysis method, linear elastic analysis method and rigid-plastic analysis method were used to calculate the positive bending resistance and the results were compared with the experimental results. It was found that the composite bridge deck has good ductility when it was subjected to positive bending. At the ultimate limit state, the positive bending resistance is governed by the stress bearing of the bulb-flat ribs and the SFRC has sufficient compressive strength. Increasing the compressive strength of SFRC has little influence on the positive bending resistance. The elastoplastic cross-sectional analysis is more accurate and applicable for the calculation of the positive bending resistance of the composite bridge deck.

Key words: bridge engineering, composite bridge deck, orthotropic steel deck, steel-fiber-reinforced concrete (SFRC), bulb-flat ribs, bending resistance

中图分类号: 

  • TU398

图1

试件构造图(单位:mm)"

表1

SFRC力学性能"

试件S-PAS-PB
抗压强度/MPa114.6104.6
抗折强度/MPa13.210.7
弹性模量/MPa49 60058 600
极限压应变/με2 3101 785

图2

正弯矩受弯试验加载方案(单位:mm)"

图3

正弯矩受弯试验加载装置"

图4

截面应变测点布置(单位:mm)"

图5

位移计和滑移计布置平面图"

图6

试件S-PA加载后的变形"

图7

试件S-PA加载后的裂缝分布(单位:mm)"

图8

试件S-PB加载后的裂缝分布(单位:mm)"

图9

试件荷载-位移曲线"

图10

试件S-PA跨中截面应变分布"

图11

试件S-PB跨中截面应变分布"

图12

钢材本构曲线"

表2

SFRC本构模型主要参数"

参数S-PAS-PB
fc/MPa10090
ε0/με2 3101 785
k1.592.06

图13

SFRC受压本构曲线"

图14

截面塑性应力分布示意图"

图15

截面正弯矩承载力分析结果"

1 Buitelaar P, Braam R. Heavy reinforced ultra thin white topping of high performance concrete for re-strengthening and rehabilitation of structures and pavements[C]∥8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, Japan, 2008: 1262-1269.
2 De Jong F B P, Kolstein M H. Strengthening a bridge deck with high performance concrete[C]∥2004 Orthotropic Bridge Conference, Sacramento, California, USA, 2004: 328-347.
3 Terada H, Maeno H, Nakamura M, et al. An experimental study on SFRC composite steel deck[J]. Structural Eng/Earthquake Eng,1986, 3(2): 469-476.
4 Hayama M, Sekiya H, Nagai M. Verification of the reinforcement effect of an SFRC pavement under a live load based on visualization of deformation of a trough rib of an orthotropic steel deck using MEMS IMUs and contact displacement gauges[J]. Journal of Bridge Engineering, 2022, 27(5): No.4022030.
5 李林波,张锋,丁庆军. SFRC在日本钢桥面铺装工程中的研究与应用[J]. 公路交通技术, 2012(1): 36-39.
Li Lin-bo, Zhang Feng, Ding Qing-jun. Research and application of SFRC in paving projects of steel decks in Japan[J]. Technology of Highway and Transport,2012(1): 36-39.
6 陈开利. 正交异性钢桥面板的疲劳裂纹处治[J]. 世界桥梁,2016(1): 70-76.
Chen Kai-li. Treatment for fatigue cracks of orthotropic steel decks[J]. World Bridges,2016(1): 70-76.
7 Cao J, Shao X, Zhang Z, et al. Retrofit of an orthotropic steel deck with compact reinforced reactive powder concrete[J]. Structure and Infrastructure Engineering, 2015, 12(3): 411-429.
8 Wang S, Ke Z, Gao Y, et al. Long-term in situ performance investigation of orthotropic steel bridge deck strengthened by SPS and RPC solutions[J]. Journal of Bridge Engineering, 2019, 24(6): 4019051-4019054.
9 Zhang S, Shao X, Cao J, et al. Fatigue performance of a lightweight composite bridge deck with open ribs[J]. Journal of Bridge Engineering, 2016, 21(7): No.4016039.
10 Jung R, Mansperger T. The ortho-composite-slab of the elbebridge wittenberge[C]∥IABSE Symposium Report: Engineering for Progree Nature and People, Madrid, Spain, 2014: 1186-1191.
11 Jiang X, Su Q, Han X, et al. Experimental study and numerical analysis on mechanical behavior of T-shape stiffened orthotropic steel-concrete composite bridge decks[J]. International Journal of Steel Structures, 2017, 17(3): 893-907.
12 苏庆田,韩旭,姜旭,等. U形肋正交异性组合桥面板力学性能[J]. 哈尔滨工业大学学报,2016, 48(9): 14-19.
Su Qing-tian, Han Xu, Jiang Xu, et al. Performance of the orthotropic composite bridge deck with U-shape stiffener[J]. Journal of Harbin Institute of Technology,2016, 48(9): 14-19.
13 苏庆田,贺欣怡,曾明根,等. T形肋正交异性组合桥面板力学性能[J]. 同济大学学报:自然科学版, 2016, 44(3): 341-347.
Su Qing-tian, He Xin-yi, Zeng Ming-gen, et al. Performance of the composite bridge deck with concrete slab and orthotropic steel plate with T-shape stiffener[J]. Journal of Tongji University (Natural Science), 2016, 44(3): 341-347.
14 Zhou W, Chen L, Shao C, et al. A long-span network arch bridge for road and rail traffic[J]. Structural Engineering International : Journal of the International Association for Bridge and Structural Engineering (IABSE). 2022, 32(2): 211-215.
15 . 公路桥涵设计通用规范 [S].
16 范立础,卓卫东. 桥梁延性抗震设计[M]. 北京: 人民交通出版社, 2001.
17 张利梅,赵顺波,黄承逵. 预应力高强混凝土梁延性性能分析与试验研究[J]. 工程力学, 2005(3): 166-171.
Zhang Li-mei, Zhao Shun-bo, Huang Cheng-kui. Experimental study of ductility of prestressed high-strength concrete beams[J]. Engineering Mechanics, 2005(3): 166-171.
18 Yang F, Liu Y, Xin H. Positive bending capacity prediction of composite girders based on elastoplastic cross-sectional analysis[J]. Engineering Structures, 2018, 167: 327-339.
19 . 公路钢结构桥梁设计规范 [S].
20 Eurocode 4. Design of composite steel and concrete structures, part 2 [S].
21 Yun X, Gardner L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36-46.
22 Walraven J. FIB model code for concrete structures 2010: mastering challenges and encountering new ones[J]. Structural Concrete: Journal of the FIB, 2013, 14(1): 3-9.
[1] 邵长江,崔皓蒙,漆启明,庄卫林. 近断层大跨RC轻柔拱桥纵向阻尼器减震研究[J]. 吉林大学学报(工学版), 2024, 54(5): 1355-1367.
[2] 赵秋,陈鹏,赵煜炜,余澳. 台后设置拱形结构的无缝桥梁整体受力性能[J]. 吉林大学学报(工学版), 2024, 54(4): 1016-1027.
[3] 张洪,朱志伟,胡天宇,龚燕峰,周建庭. 基于改进YOLOv5s的桥梁螺栓缺陷识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 749-760.
[4] 韩智强,谢刚,卓亚娟,骆佐龙,李华腾. 基于车轮-桥面相干激励的大跨连续梁桥振动响应[J]. 吉林大学学报(工学版), 2024, 54(2): 436-444.
[5] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[6] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[7] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[8] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[9] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[10] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[11] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[12] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[13] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[14] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[15] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!