吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 1913-1922.doi: 10.13229/j.cnki.jdxbgxb.20221236

• 交通运输工程·土木工程 • 上一篇    

建成环境对交通小区地铁通勤客流的异质性影响

马书红(),廖国美,黄岩,张俊杰   

  1. 长安大学 运输工程学院,西安 710064
  • 收稿日期:2022-09-22 出版日期:2024-07-01 发布日期:2024-08-05
  • 作者简介:马书红(1975-),女,教授,博士. 研究方向:交通运输规划与管理. E-mail: msh@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(51878062);陕西省交通厅科技项目(21-13R)

Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones

Shu-hong MA(),Guo-mei LIAO,Yan HUANG,Jun-jie ZHANG   

  1. College of Transportation Engineering,Chang′an University,Xi′an 710064,China
  • Received:2022-09-22 Online:2024-07-01 Published:2024-08-05

摘要:

本文构建GWR(Geographically weighted regression)模型拟合建成环境变量与地铁客流的关系,并分析建成环境显著变量对地铁客流的异质性影响。采用西安市地铁1、2、3号线63个站点共5个工作日的客流数据,利用ArcGIS软件将客流数据与交通小区匹配,在传统最小二乘法的基础上构建GWR模型,考虑人均GDP、土地利用混合度、停车场密度、交叉口密度、地铁出入口密度等对交通小区地铁客流的影响,得到如下结论: GWR模型能有效刻画交通小区地铁通勤客流与建成环境变量互动关系的空间非平稳性及影响尺度,其结果优于传统最小二乘法;同时,分析发现人均GDP、土地利用混合度、交叉口密度、地铁出入口密度4个变量对交通小区地铁客流的影响显著;土地利用混合度对地铁通勤客流的吸引远远大于地铁出入口密度,且在土地利用开发程度和均衡度较低的交通小区表现更明显。

关键词: 城市交通, 建成环境, 通勤出行, 地铁客流, GWR模型

Abstract:

This paper using the Geographically Weighted Regression model to fit the relationship between built environment variables and subway passenger flow, and analyzes the influence of significant variables on subway passenger flow. Using the passenger flow data of 63 stations of Xi'an Metro Line 1, 2 and 3 for 5 working days, and ArcGIS to match the passenger flow with the traffic analysis zones. On the basis of the traditional least squares regression model, constructed the GWR model. Considering the impact of GDP per capita, land use mixing degree, parking lot density, intersection density, subway entrance and exit density, etc. on the passenger flow of subway entrances and exits. The following conclusions can be obtained: The GWR model can depict the spatial non-stationarity and influence scale of the interaction between subway commuter passenger flow and built environment variables, and its results are better than the traditional least squares method. Meanwhile, we found that four variables-GDP per capita, land use mixing degree, intersection density, and subway entrance and exit density-have significant effects on subway passenger flow. The attraction of land-use mixing degree to subway commuter traffic is much greater than the density of subway entrances and exits, and more obvious in traffic analysis zones with low degree of land use development and balance.

Key words: urban traffic, built environment, commuting, subway passenger flow, geographically weighted regression model

中图分类号: 

  • U491

图1

工作日交通小区高峰时段总客流量"

表1

交通小区各类POI数量统计 (个)"

土地分类交通小区编号POI类型
1234567891011
合计584001195861355389344216216928266
商服用地211749913634114885213415552
居住用地62052541111884713
公共设施服务用地3726094682450311412423
交通设施用地21200302247101101101739401101
旅游用地01425999521110
其他用地2673273004913492505020077

图2

交通小区POI核密度分布"

表2

变量及其描述性统计"

变量类型变量名称变量描述均值标准差
因变量高峰客流量早晚高峰交通小区地铁通勤总客流量/人63485732
社会经济属性常住人口研究单元常住人口数/人1950.003632.50
人口密度研究单元每平方公里的城市居民数/(人·km-219.6019.00
人均GDP研究区域人均生产总值/(元·人-1125 000.91108 484.58
土地利用属性土地利用混合度研究单元内平均土地利用混合度1.180.20
公共服务密度研究单元内科教文化、医疗等的密度/(个·km-287.3694.79
商服密度研究单元内餐饮、购物、住宿等的密度/(个·km-2145.19168.33
停车场密度研究单元内停车场密度/(个·km-252.0048.81
道路连通性及 基础设施属性交叉口密度研究单元内交叉口数量与土地面积比/(个·km-221.0628.46
公交车站点密度研究单元内公交站点密度/(个·km-28.8211.09
地铁出入口密度地铁站点出入口总数与交通小区面积之比/(个·km-21.180.20

表3

自变量间皮尔逊相关系数分析"

常住

人口

人口

密度

人均

GDP

土地利用

混合度

公共服务

密度

商服

密度

停车场

密度

交叉口

密度

公交车站

密度

地铁出入

口密度

常住人口1-0.334**0.0190.175*-0.309**-.290**-0.347**-.268**-0.124-0.247**
人口密度10.384**0.1090.659**0.706**0.838**0.571**0.0990.317**
人均GDP1-0.250**0.388**0.498**0.371**0.349**-0.012-0.009
土地利用混合度10.002-.189*0.0240.0490.007-0.069
公共服务密度10.703**0.708**0.666**0.1410.431**
商服密度10.715**0.616**0.204*0.484**
停车场密度10.654**0.258**0.291**
交叉口密度10.308**0.313**
公交车站密度10.111
地铁出入口密度1

表4

Moran’s I检验结果"

变量常住人口人口密度人均GDP土地利用混合度公共服务密度交叉口密度公交站点密度地铁出入口密度
Moran’s I0.53930.43630.25540.52890.64960.62460.57770.3004
EI-0.0084-0.0084-0.0084-0.0084-0.0084-0.0084-0.0084-0.0084
Z7.83115.52973.13337.90139.12668.12057.63834.5737
P-value0.00200.00200.00200.00200.00200.00200.00200.0020

表5

交通小区地铁客流量最小二乘法回归结果"

变量系数标准差t统计量概率[bVIF
截距-3747.8563043.245-1.2320.220
常住人口0.1660.1341.2360.2191.322
人口密度-23.85132.801-0.7270.4692.164
人均GDP0.0300.0056.0020.000**1.605
土地利用混合度4795.4672430.2301.9730.050*1.278
公共服务密度2.6927.1490.3770.7072.560
交叉口密度-46.44921.786-2.1320.035*2.143
公交站点密度-7.76760.965-0.1270.8991.136
地铁出入口密度186.95144.2254.2270.000**1.342
Adjusted R20.285
AICc2628

表6

显著变量对交通小区地铁客流量最小二乘法回归结果"

变量系数标准差t统计量概率[bVIF
截距-3927.9302910.100-1.3490.180
人均GDP0.0300.0046.8560.000**1.275
土地利用混合度5159.3522254.6562.2880.024*1.111
交叉口密度-55.36217.088-3.2400.002**1.331
地铁出入口密度177.59240.7244.3610.000**1.149
Adjusted R20.292
AICc2622

表7

交通小区地铁通勤客流量GWR结果"

解释变量平均值最小值中位值最大值标准差
人均GDP0.0320.0180.0320.0360.003
土地利用混合度5064.980302.4325261.5898726.3271847.402
交叉口密度-48.431-100.066-38.870-17.23722.270
地铁出入口密度176.77542.512186.583268.30654.042
最优带宽93
Adjusted R20.354
AICc2617

图3

GWR模型回归系数空间分布"

1 中国城市规划设计研究院.2020年度全国主要城市通勤监测报告[R/OL]. [2021-04-18]. .
2 中国城市规划设计研究院. 2021年度全国主要城市通勤监测报告[R/OL]. [2022-04-20]. .
3 Wang J, Zhang N P, Peng H, et al. Spatiotemporal heterogeneity analysis of influence factor on urban rail transit station ridership[J]. Journal of Transportation Engineering, Part A: Systems, 2022, 148(2): No. 04021115.
4 Loo B P Y, Chen C, Chan E T H. Rail-based transit-oriented development: lessons from New York City and Hong Kong[J]. Landscape and Urban Planning, 2010, 97(3): 202-212.
5 王玉萍, 陈宽民, 杨富社, 等. 城市轨道交通客流预测结果的技术分析体系[J]. 长安大学学报: 自然科学版, 2011, 31(3): 72-80.
Wang Yu-ping, Chen Kuan-min, Yang Fu-she, et al. Analysis system of urban rail transit passenger flow forcast result[J].Journal of Chang'an University (Natural Science Edition), 2011, 31(3):72-80.
6 Kuby M, Barranda A, Upchurch C. Factors influencing light-rail station boardings in the United States[J]. Transportation Research Part A: Policy and Practice, 2004, 38(3): 223-247.
7 江世雄, 蔡灿煌, 林宇晨, 等. 天气因素对福州地铁客流的影响分析[J]. 交通运输系统工程与信息, 2021, 21(3): 268-274.
Jiang Shi-xiong, Cai Can-huang, Lin Yu-chen, et al. Analysis of weather´s influences on metro ridership in Fuzhou[J].Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 268-274.
8 Xin M W, Shalaby A, Feng S M, et al. Impacts of COVID-19 on urban rail transit ridership using the synthetic control method[J]. Transport Policy, 2021, 111: 1-16.
9 Cummings C, Mahmassani H. Does intercity rail station placement matter? Expansion of the node-place model to identify station location impacts on Amtrak ridership[J]. Journal of Transport Geography, 2022, 99: No.103278.
10 Najafabadi S, Hamidi A, Allahviranloo M, et al. Does demand for subway ridership in Manhattan depend on the rainfall events?[J]. Transport Policy, 2019, 74: 201-213.
11 Liu Y, Liu Z, Jia R. DeepPF: a deep learning based architecture for metro passenger flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 18-34.
12 Li S Y Liu D J, Huang G P, et al. Spatially varying impacts of built environment factors on rail transit ridership at station level: a case study in Guangzhou, China[J]. Journal of Transport Geography, 2020, 82: No.102631.
13 Lanza K, Oluyomi A, Durand C, et al. Transit environments for physical activity: relationship between micro-scale built environment features surrounding light rail stations and ridership in Houston, Texas[J]. Journal of Transport & Health, 2020,19: No. 100924.
14 高德辉, 许奇, 陈培文, 等. 城市轨道交通客流与精细尺度建成环境的空间特征分析[J]. 交通运输系统工程与信息, 2021, 21(6): 25-32.
Gao De-hui, Xu Qi, Chen Pei-wen, et al. Spatial characteristics of urban rail transit passenger flows and fine-scale built environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 25-32.
15 申犁帆, 王烨, 张纯, 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018, 73(12):2423-2439.
Shen Li-fan, Wang Ye, Zhang Chun, et al. Relationship between built environment of rational pedestrian catchment areas and URT commuting ridership: evidence from 44 URT stations of Bejing[J]. Acta Geographica Sinica, 2018, 73(12): 2423-2439.
16 .土地利用现状分类 [S].
17 Yan X, Zhou J, Sheng F, et al. Influences of built environment at residential and work location-s on commuting distance: evidence from Wuhan, China[J]. ISPRS International Journal of Geo-Information, 2022, 11(2): 124.
18 Yang H, Lu X, Cherry C, et al. Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression[J]. Transp Geogr,2017, 64: 184-194.
19 Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.
20 Akaike H. A new look at the statistical mode-l identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
21 Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted summary statistics-a framework for localised exploratory data analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6):501-524.
[1] 熊志华,董黛悦,董春娇,郑炎,解超. 考虑个人偏好的观赛人群组合决策选择行为[J]. 吉林大学学报(工学版), 2024, 54(4): 979-986.
[2] 吴娇蓉,林清凯,邓泳淇. 基于公交线路运行稳定性的潜在公交专用道需求识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 692-699.
[3] 庄焱,董春娇,米雪玉,张小雨,王菁. 基于随机参数Logit的中小城市居民出行方式选择建模[J]. 吉林大学学报(工学版), 2024, 54(2): 461-468.
[4] 张文会,伊静. 考虑通行能力和排队延误的公交停靠系统优化[J]. 吉林大学学报(工学版), 2024, 54(1): 146-154.
[5] 尹超英,陆颖,邵春福,马健霄,许得杰. 考虑空间自相关的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1994-2000.
[6] 邝先验,陈自如. 基于CA的无信号灯控制路段行人过街横道处动态博弈礼让行为[J]. 吉林大学学报(工学版), 2022, 52(4): 837-846.
[7] 贾洪飞,邵子函,杨丽丽. 终点不确定条件下网约车合乘匹配模型及算法[J]. 吉林大学学报(工学版), 2022, 52(3): 564-571.
[8] 尹超英,邵春福,黄兆国,王晓全,王晟由. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报(工学版), 2022, 52(3): 572-577.
[9] 董春娇,董黛悦,诸葛承祥,甄理. 电动自行车出行特性及骑行决策行为建模[J]. 吉林大学学报(工学版), 2022, 52(11): 2618-2625.
[10] 吴静娴,申华鹏,韩印,杨敏. 考虑城市建成环境非线性作用的通勤时间模型[J]. 吉林大学学报(工学版), 2022, 52(11): 2568-2573.
[11] 杨世军,裴玉龙,潘恒彦,程国柱,张文会. 城市公交车辆驻站时间特征分析及预测[J]. 吉林大学学报(工学版), 2021, 51(6): 2031-2039.
[12] 尹超英,邵春福,王晓全,熊志华. 考虑空间异质性的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 543-548.
[13] 孙宝凤,姜源,郑黎黎,崔万坤,任欣欣. 变覆盖半径下城市轨道交通维护保障网络设计模型[J]. 吉林大学学报(工学版), 2020, 50(2): 526-534.
[14] 尹超英,邵春福,王晓全. 考虑停车可用性的建成环境对小汽车通勤出行的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 714-719.
[15] 陈磊,王江锋,谷远利,闫学东. 基于思维进化优化的多源交通数据融合算法[J]. 吉林大学学报(工学版), 2019, 49(3): 705-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!