吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2540-2546.doi: 10.13229/j.cnki.jdxbgxb.20221516

• 交通运输工程·土木工程 • 上一篇    

考虑等待忍耐时间的电动自行车违规行为研判

董春娇1(),陆育霄1,马社强2(),李鹏辉1   

  1. 1.北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
    2.中国人民公安大学 交通管理学院,北京 100038
  • 收稿日期:2022-11-26 出版日期:2024-09-01 发布日期:2024-10-28
  • 通讯作者: 马社强 E-mail:cjdong@bjtu.edu.cn;masheqiang@163.com
  • 作者简介:董春娇(1982-),女,教授,博士.研究方向:交通安全,智能交通.E-mail:cjdong@bjtu.edu.cn
  • 基金资助:
    2023年度国家社科基金重大项目(23&ZD138);国家自然科学基金项目(72371017)

Identification of Ebike violation behaviors by considering waiting tolerance time

Chun-jiao DONG1(),Yu-xiao LU1,She-qiang MA2(),Peng-hui LI1   

  1. 1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University,Beijing 100044,China
    2.School of Traffic Management,People's Public Security University of China,Beijing 100038,China
  • Received:2022-11-26 Online:2024-09-01 Published:2024-10-28
  • Contact: She-qiang MA E-mail:cjdong@bjtu.edu.cn;masheqiang@163.com

摘要:

引入生存分析法,将不违规和违规电动自行车骑行者的等待忍耐时间分别作为删失和完全数据,建立了电动自行车违规率函数,估算了单因素影响下的电动自行车违规率。将部分等待忍耐时间做分布形式假设,构建融合了参数方法和非参数方法特征的Cox比例风险回归模型,刻画多因素影响下的电动自行车违规行为。提取了1 335辆非机动车的等待行为数据,结合乘积极限法得到性别、年龄和非机动车类型影响下的电动车违规率函数。研究结果表明:中老年电动自行车骑行者违规率始终高于青年;当等待时间少于25 s时,女性电动自行车骑行者的违规率更高;当等待时间少于44 s或者在88~100 s时,电动自行车的违规率高于传统自行车和电动三轮车。与传统自行车违规行为的“从众”效应不同,当非机动车道狭窄或者是组群规模足够大,能够抑制电动自行车违规行为。增设协管员和专用左转相位能有效减少电动自行车违规行为。

关键词: 城市交通, 电动自行车, 等待忍耐时间, 违规行为, 比例风险回归模型

Abstract:

By introducing the survival analysis, the waiting tolerance time of non-violation and violation electric bicycle riders was taken as deleted and complete data respectively. The violation rate function of electric bicycles was developed to estimate the violation rate under the influence of single factor. Secondly, part of the waiting time was assumed with a distributed form, and a Cox proportional risk regression model was proposed that integrated the characteristics of parametric and non-parametric methods to describe the violations of electric bicycle under the influence of multiple factors. The waiting behavior data of 1 335 non-motor vehicles were extracted, and by using the product limit estimation method, the violation rate function of electric vehicles under the influence of gender, age and non-motor vehicle type was obtained. The results showed that the violation rate of middle-aged and elderly riders is higher than that of young riders; the violation rate of female riders is higher with the waiting time is less than 25 s; the violation rate of electric bicycles is higher than that of traditional bikes and e-tricycles when the waiting time is less than 44 s or between 88 s and 100 s. Unlike the "bandwagon" effect of traditional bicycle violations, when the non-motorized lanes are narrow or the group size is large enough, electric bicycle violations can be suppressed. The escort and dedicated left turn phase can effectively reduce the violation rate of electric bicycles.

Key words: urban traffic, electric bicycle, waiting tolerance time, violation behavior, proportional risk regression model

中图分类号: 

  • U491.1

表1

非机动车骑行者等待忍耐时间特征"

类型最大值/s最小值/s平均值/s标准差
电动自行车99.000.0010.1421.02
传统自行车104.000.0014.9228.83
电动三轮车72.000.0022.4424.12

图1

单因素影响下的电动自行车违规率估算结果对比"

表2

等待忍耐时间百分位数值"

类别影响因素

等待忍耐时间

分位数值/s

50%分位数75%分位数
性别28
14
年龄青年(<30岁)45
中老年(≥30岁)16
非机动车类别电动自行车23
传统自行车10468
电动三轮车7245

表3

模型参数估算结果"

影响因素

系数

估计

显著性Exp(B95%置信区间
下限上限
红灯时长/s0.0190.0001.0191.0101.029
协管员(有/无)-0.4670.0360.6270.4050.971
左转相位(有/无)-1.1030.0000.3320.2120.519
非机动车道宽度/m0.4670.0001.5961.2622.019
组群规模(5~10/<5)-0.6200.0000.5380.3930.737
组群规模(>10/<5)-0.8090.0000.4450.3080.643
机动车交通量(pcu/进口道/h)-0.0010.0330.9990.9991.000

图2

电动自行车违规率估算结果比较"

1 Wu C X, Yao L, Zhang K. The red-light running behavior of electric bike riders and cyclists at urban intersections in China: an observational study[J]. Accident Analysis and Prevention, 2012, 49: 186-192.
2 Zhang Y Q, Wu C X. The effects of sunshields on red light running behavior of cyclists and electric bike riders[J]. Accident Analysis and Prevention, 2013, 52: 210-218.
3 Yang X B, Huan M, Mohamed A A, et al. A hazard-based duration model for analyzing crossing behavior of cyclists and electric bike riders at signalized intersections[J]. Accident Analysis Prevention, 2015, 74: 33-41.
4 覃国峰, 王涛, 赵军,等. 基于SEM的电动自行车驾驶员危险性驾驶行为研究[J]. 黑龙江科技信息, 2016(16): 140-141.
Qin Guo-feng, Wang Tao, Zhao Jun, et al. Study on dangerous driving behavior of electric bicycle drivers based on SEM[J]. Scientific and Technological Innovation Information, 2016(16): 140-141.
5 王涛. 电动自行车风险驾驶行为及事故机理研究[D]. 南京, 东南大学交通运输学院, 2017.
Wang Tao. The mechanism study on the risky driving behavior and accident of electric bike riders[D]. Nanjing: School of Traffic and Transportation, Southeast University, 2017.
6 柏璐. 城市道路电动自行车交通特性与安全影响研究[D]. 南京: 东南大学交通运输学院, 2017.
Bai Lu. Research on traffic characteristics and safety effect of electric bicycles in urban streets[D]. Nanjing: School of Traffic and Transportation, Southeast University, 2017.
7 杨硕. 电动自行车骑行行为问卷设计及信效度检验[J]. 交通工程, 2019, 19(3): 57-62.
Yang Shuo. Questionnaire Design and test of its reliability and validity for electric bicycle riding behavior[J]. Journal of Transportation Engineerig, 2019, 19(3): 57-62.
8 王涛, 黎文皓, 谢思红, 等. 电动自行车风险驾驶行为因子分析及相关因素研究[J]. 重庆交通大学学报: 自然科学版, 2019, 38(11): 118-126.
Wang Tao, Li Wen-hao, Xie Si-hong, et al. Factor analysis and related factors study on electric bicycle risk driving behavior[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(11): 118-126.
9 环梅, 杨小宝, 贾斌. 基于生存分析方法的非机动车闯红灯行为研究[J]. 北京理工大学学报, 2013, 33(8): 815-819.
Huan Mei, Yang Xiao-bao, Jia Bin. Red-light running behavior of non-motor vehicles based on survival analysis[J]. Transactions of Beijing Institute of Technology, 2013, 33(8): 815-819.
10 环梅. 基于生存分析的信号交叉口非机动车穿越行为研究[D]. 北京: 北京交通大学交通运输学院, 2014.
Huan Mei. Crossing behavior of nonmotorized vehicles at urban intersections based on survival analysis method[D]. Beijing:School of Traffic and Transportation, Beijing Jiaotong Universit, 2014.
11 董春娇, 诸葛承祥, 董黛悦, 等. 电动自行车出行特性及骑行决策行为建模[J]. 吉林大学学报: 工学版, 2022, 52(11): 2618-2625.
Dong Chun-jiao, Zhuge Cheng-xiang, Dong Dai-yue, et al. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2618-2625.
12 董春娇, 薛维洋, 谢坤, 等. 电动自行车不安全骑行决策行为建模[J]. 北京交通大学学报, 2021, 45(215): 105-110.
Dong Chun-jiao, Xue Wei-yang, Xie Kun, et al. Decision-making modeling for unsafe riding behaviors on electric bicycles [J]. Journal of Beijing Jiaotong University, 2021, 45(215): 105-110.
[1] 马书红,廖国美,黄岩,张俊杰. 建成环境对交通小区地铁通勤客流的异质性影响[J]. 吉林大学学报(工学版), 2024, 54(7): 1913-1922.
[2] 熊志华,董黛悦,董春娇,郑炎,解超. 考虑个人偏好的观赛人群组合决策选择行为[J]. 吉林大学学报(工学版), 2024, 54(4): 979-986.
[3] 吴娇蓉,林清凯,邓泳淇. 基于公交线路运行稳定性的潜在公交专用道需求识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 692-699.
[4] 庄焱,董春娇,米雪玉,张小雨,王菁. 基于随机参数Logit的中小城市居民出行方式选择建模[J]. 吉林大学学报(工学版), 2024, 54(2): 461-468.
[5] 张文会,伊静. 考虑通行能力和排队延误的公交停靠系统优化[J]. 吉林大学学报(工学版), 2024, 54(1): 146-154.
[6] 邝先验,陈自如. 基于CA的无信号灯控制路段行人过街横道处动态博弈礼让行为[J]. 吉林大学学报(工学版), 2022, 52(4): 837-846.
[7] 贾洪飞,邵子函,杨丽丽. 终点不确定条件下网约车合乘匹配模型及算法[J]. 吉林大学学报(工学版), 2022, 52(3): 564-571.
[8] 董春娇,董黛悦,诸葛承祥,甄理. 电动自行车出行特性及骑行决策行为建模[J]. 吉林大学学报(工学版), 2022, 52(11): 2618-2625.
[9] 杨世军,裴玉龙,潘恒彦,程国柱,张文会. 城市公交车辆驻站时间特征分析及预测[J]. 吉林大学学报(工学版), 2021, 51(6): 2031-2039.
[10] 孙宝凤,姜源,郑黎黎,崔万坤,任欣欣. 变覆盖半径下城市轨道交通维护保障网络设计模型[J]. 吉林大学学报(工学版), 2020, 50(2): 526-534.
[11] 陈磊,王江锋,谷远利,闫学东. 基于思维进化优化的多源交通数据融合算法[J]. 吉林大学学报(工学版), 2019, 49(3): 705-713.
[12] 魏丽英, 崔裕枫, 魏家蓉. 基于局部最大熵换道规则的电动自行车流元胞自动机仿真模型[J]. 吉林大学学报(工学版), 2017, 47(5): 1436-1445.
[13] 高继东, 曾必强, 彭伟. 电动自行车与轿车碰撞中骑车人的伤害特征[J]. 吉林大学学报(工学版), 2016, 46(6): 1786-1791.
[14] 徐程, 曲昭伟, 陶鹏飞. 混合自行车交通流下的自行车道通行能力估计[J]. 吉林大学学报(工学版), 2016, 46(1): 63-69.
[15] 于德新,杨兆升,高鹏. 动态限制搜索区域的带约束K则最优路径算法[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 172-0176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!