吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 63-69.doi: 10.13229/j.cnki.jdxbgxb201601010

• • 上一篇    下一篇

混合自行车交通流下的自行车道通行能力估计

徐程1, 2, 曲昭伟1, 陶鹏飞1   

  1. 1.吉林大学 交通学院,长春 130022;
    2.浙江警察学院 交通管理工程系,杭州 310053
  • 收稿日期:2014-10-12 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 陶鹏飞(1984-),男,博士,讲师.研究方向:交通流理论.E-mail:taopengfei@gmail.com
  • 作者简介:徐程(1985-),女,讲师,博士研究生.研究方向:交通管理,交通安全.E-mail:grazia_xu@126.com
  • 基金资助:
    国家自然科学基金项目(51278220, 51278454); 浙江省重点科技创新团队项目(2013TD09)

Estimation of bicycle path capacity under mixed bicycle traffic flow

XU Cheng1, 2, QU Zhao-wei1, TAO Peng-fei1   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.Department of Traffic Management Engineering, Zhejiang Police College, Hangzhou 310053, China
  • Received:2014-10-12 Online:2016-01-30 Published:2016-01-30

摘要: 通过引入5种经典的机动车交通量速度-密度关系模型建立了自行车交通流速度-密度关系模型,进而将其转化为流量-密度关系模型,得到自行车道通行能力的估计值。采集杭州市3个不同宽度路段的实测数据进行模型验证与参数标定,在平均61%的电动自行车比例下,自行车道每米宽度的通行能力平均值为2400辆/小时。最后,分别分析了骑行人性别、年龄与电动自行车混行比例3个因素对通行能力的影响。结果表明,骑行人性别与年龄构成与通行能力不存在显著相关性,而电动自行车比例与通行能力存在显著的线性相关性。

关键词: 交通运输系统工程, 电动自行车, 普通自行车, 通行能力, 速度-密度关系模型

Abstract: The capacity is a key parameter in bicycle path planning, design and management. With the rapid development of electric bicycles (E-bikes) in China, the E-bikes and the bicycles share the conventional bicycle path, which leads to certain safety and efficiency issues. Five classic speed-density relationship models were introduced to build the speed-density relationship of mixed bicycle traffic flow. The bicycle path capacity was estimated using the flow-density relationship. Field data were collected from three bicycle paths in Hangzhou, China for calibration and validation. With 61% of E-bikes, the mean capacity of per meter width of the three paths is 2000 bicycles/h. Finally, the effects of riders' gender, age and E-bike proportion were analyzed. Results show that riders' gender and age have no significant influence on the path capacity, while there is significant linear correlation between E-bike proportion and bicycle path capacity.

Key words: transportation system engineering, electric bicycle, conventional bicycle, traffic capacity, speed-density relationship model

中图分类号: 

  • U491
[1] 电动自行车数量破2亿“新国标”将出台[N/OL].[2013-10-20]. http://news.xinhuanet.com/fortune/2013-10/20/c_125566241.htm.
[2] Qu X, Yang Y, Liu Z, et al. Potential crash risks of expressway on-ramps and off-ramps: a case study in Beijing, China[J]. Safety Science, 2014, 70: 58-62.
[3] Kuang Y, Qu X, Wang S. Propagation and dissipation of crash risk on saturated freeways[J]. Transportmetrica B: Transport Dynamics, 2014, 2(3): 203-214.
[4] Qu X, Kuang Y, Oh E, et al. Safety evaluation for expressways: a comparative study for macroscopic and microscopic indicators[J]. Traffic Injury Prevention, 2014, 15(1): 89-93.
[5] Lin S, He M, Tan Y, et al. Comparison study on operating speeds of electric bicycles and bicycles: experience from field investigation in Kunming, China[J]. Journal of the Transportation Research Board, 2008, 2048: 52-59.
[6] Zhang H, Shaheen S A, Chen X. Bicycle evolution in China: from the 1900s to the present[J]. International Journal of Sustainable Transportation, 2014, 8(5): 317-335.
[7] Asian Development Bank. Electric bikes in the People's Republic of China: impact on the environment and prospects for growth[R]. Asian Development Bank,2009.
[8] Kim J K, Kim S, Ulfarsson G F. Bicyclist injury severities in bicycle-motor vehicle accidents[J]. Accident Analysis and Prevention, 2007, 39(2): 238-251.
[9] Transportation Research Board. Highway Capacity Manual[S]. Washington, DC: National Research Council,2000.
[10] 中华人民共和国住房和城乡建设部. 城市道路工程设计规范[S]. CJJ37-2012, 2012.
[11] Homburger W S. Capacity of bus routes, and of pedestrian and bicycle facilities. institute of transportation studies[R].Berkeley:University of California, Berkeley, 1976.
[12] Botma H. Method to determine levels of service for bicycle paths and pedestrian-bicycle paths[J]. Transportation Research Record, 1995, 1502: 38-44.
[13] 魏恒,任福田,刘小明. 自行车行驶状态与自行车道通行能力关系研究[J]. 中国公路学报, 1993, 6(4): 60-64.
Wei Heng, Ren Fu-tian, Liu Xiao-ming. Research on the relationship between bicycle traveling state and bicycle road capacity[J]. China Journal of Highway and Transport, 1993, 6(4): 60-64.
[14] Liu X, Shen L D, Ren F. Operational analysis of bicycle interchanges in Beijing, China[J]. Transportation Research Record, 1993, 1396: 18-21.
[15] 宋现敏, 金盛, 王殿海, 等. 考虑侧向偏移的车辆跟驰模型[J]. 吉林大学学报:工学版, 2011, 41(2): 333-337.
Song Xian-min, Jin Sheng, Wang Dian-hai, et al. Vehicle-following model considering lateral offset[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(2): 333-337.
[16] 徐程,曲昭伟,金盛. 考虑侧向偏移的车辆跟驰行为建模仿真[J]. 吉林大学学报:工学版, 2014, 44(6): 23-27.
Xu Cheng, Qu Zhao-wei, Jin Sheng. Modeling and simulation of car following behavior considering lateral separation[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 23-27.
[17] 王殿海. 交通流理论[M]. 北京:人民交通出版社, 2002.
[18] Greenshields B D. A study in highway capacity[J]. Highway Research Board Proceedings, 1935, 14: 448-477.
[19] 梁春岩. 自行车交通流特性及其应用研究[D]. 长春:吉林大学交通学院, 2004.
Liang Chun-yan.Study on characteristics and application of bicycle traffic flow[D].Changchun:College of Transportation,Jilin University,2004.
[20] Greenberg H. An analysis of traffic flow[J]. Operation Research, 1959, 7: 79-85.
[21] Underwood R T. Speed, volume, and density relationship: quality and theory of traffic flow[R]. Yale Bureau of Highway Traffic, 1961: 141-188.
[22] Newell G F. Nonlinear effects in the dynamics of car following[J]. Operation Research, 1961, 9(2): 209-229.
[23] Pipes L A. Car following models and the fundamental diagram of road traffic[J]. Transportation Research, 1976, 1(1): 21-29.
[24] Jin S, Wang D, Xu C, et al. Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter[J]. Journal of Zhejiang University: Science A, 2013, 14(4): 231-243.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!