吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 2884-2896.doi: 10.13229/j.cnki.jdxbgxb.20221551

• 交通运输工程·土木工程 • 上一篇    

聚丙烯纤维混凝土断裂韧度试验与数值分析

许颖(),樊悦,王青原,张振宇   

  1. 哈尔滨工业大学(深圳) 广东省土木工程智能韧性结构重点实验室,广东 深圳 518055
  • 收稿日期:2022-12-04 出版日期:2024-10-01 发布日期:2024-11-22
  • 作者简介:许颖(1977-),女,副教授,博士.研究方向:复合材料在土木工程中的应用,土木工程结构健康监测,光纤传感器,再生建筑材料.E-mail: cexyx@hotmail.com
  • 基金资助:
    国家自然科学基金项目(52078173);广东省自然科学基金项目(2024A1515011980)

Experiment and numerical analysis on fracture toughness of polypropylene fiber reinforced concrete

Ying XU(),Yue FAN,Qing-yuan WANG,Zhen-yu ZHANG   

  1. Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering,Harbin Institute of Technology,Shenzhen 518055,China
  • Received:2022-12-04 Online:2024-10-01 Published:2024-11-22

摘要:

本文采用9组不同配合比的聚丙烯纤维增强混凝土(Polypropylene fiber reinforced concrete,PPFRC)进行预制裂缝梁三点弯曲试验,以聚丙烯纤维掺量和长径比为控制变量,基于双K断裂模型和四阶段断裂模型分别探讨了聚丙烯纤维对混凝土不同断裂韧度的影响,得到了PPFRC的粘聚力-裂缝张开位移双线性软化曲线,引入影响系数解决了经验计算公式的修正问题,利用ABAQUS的扩展有限元法模拟断裂过程,通过参数分析验证模型分析梁断裂行为的可行性。本文结果表明:四阶段断裂模型更适用于作为PPFRC结构失效的判定准则,模型中的宏观裂缝起裂韧度与纤维掺量成正比,与长径比成反比,结构失效韧度与掺量和长径比均呈正相关。掺入12 kg/m3、20 mm长聚丙烯纤维的混凝土宏观裂缝起裂韧度和结构失效韧度分别为9.80、55.32 MPa·m1/2。双线性软化本构经验公式中引入的聚丙烯粗纤维βp=0.849;聚丙烯细纤维βp在0.409~0.552,取值随长径比增大而上升。

关键词: 建筑材料, 聚丙烯纤维, 断裂韧度, 扩展有限元法, 双线性软化曲线

Abstract:

Nine groups of notched PPFRC beam with different proportions are tested for three-point bending test to study the control variable as polypropylene fiber dosage and length/diameter ratio. Based on double-K fracture model and four-stage fracture model, the influence of polypropylene fiber on different fracture toughness is discussed respectively. The bilinear softening curve of PPFRC is concluded, The influence coefficient is introduced to solve the problem of modifying the empirical calculation formula. The XFEM(Extended finite element method)of ABAQUS was used to simulate the fracture process, and the feasibility of the model was verified by parameter analysis. The results show that the four-stage fracture model is more suitable for judging the failure of PPFRC structure. The macro-crack initiation toughness in the model is positively correlated with the fiber dosage and negatively correlated with the length/diameter ratio. The structural failure toughness is positively correlated with the fiber dosage and length/diameter ratio. The macro crack initiation toughness and structural failure toughness of 12 kg/m3 and 20 mm polypropylene fiber concrete are 9.80 MPa·m1/2 and 55.32 MPa·m1/2. The βp of macro fiber introduced in bilinear softening constitutive equation is 0.849; The value of βp of micro fiber is in the range of 0.409-0.552 and increases with the increase of aspect ratio.

Key words: architecture material, polypropylene fiber, fracture toughness, extended finite element method(XFEM), bilinear softening curve

中图分类号: 

  • TU528

表1

聚丙烯纤维物理力学指标"

符号l/mmd/mmρ/(g·cm-3ft/MPaE/GPa
T10、16、200.150.917508
P400.60.916507

表2

混凝土配合比"

编号配合比/(kg·m-3纤维
水泥粉煤灰减水剂长/mm用量/(kg·m-3
SU445153676421 0716.2/0
P-6445153676421 0716.2406
P-9445153676421 0716.2409
P-12445153676421 0716.24012
T10-9445153676421 0716.2109
T16-9445153676421 0716.2169
T20-6445153676421 0716.2206
T20-9445153676421 0716.2209
T20-12445153676421 0716.22012

表3

抗压强度"

编号抗压强度/MPa抗压强度平均值/MPa变异系数强度比
123
SU68.070.167.468.50.01691
P-666.470.568.168.30.02461.00
P-971.876.365.071.00.06541.04
P-1270.369.067.568.90.01661.01
T20-668.261.858.762.90.06290.92
T20-975.476.678.476.80.01611.12
T20-1275.081.182.179.40.03951.16
T16-970.171.970.770.90.01061.03
T10-973.368.075.872.40.04491.06

图1

混凝土抗压强度"

图2

预制裂缝三点弯曲混凝土梁"

图3

混凝土双线性软化曲线"

图4

混凝土裂缝扩展路径"

表4

双K断裂韧度计算结果"

编号CMODc/mmCTODc/mmPini/NKICini/(MPa·m1/2σICiniPmax/NKICun/(MPa·m1/2σICun
SU0.0630.032 82 210.80.6130.0183 335.91.6660.087
P-60.0470.025 82 430.70.6830.0193 298.91.7530.052
P-90.0520.028 22 761.10.7880.0233 587.02.2420.100
P-120.0570.029 12 430.40.6850.0243 502.31.9990.123
T20-60.0580.029 22 584.20.7370.0483 203.62.0500.155
T20-90.0470.033 32 726.90.8090.0143 558.62.4130.103
T20-120.0440.036 42 561.40.7310.0373 815.42.1710.262
T16-90.0560.036 72 388.30.6880.0493 502.92.4670.168
T10-90.0590.037 41 898.90.5090.0623 970.12.9800.368

图5

双K断裂韧度"

表5

四阶段断裂韧度计算结果"

编号CMODmacro/mmPmacro/NKICmacro/(MPa·m1/2σICmacroPfailure/NKICfailure/(MPa·m1/2σICfailure
SU0.2631 474.73.250.528667.24.240.345
P-60.2011 616.75.680.144421.810.191.271
P-90.1991 929.86.270.838591.314.301.080
P-120.1972 052.36.850.905947.852.821.211
T20-60.2151 983.54.810.855748.619.443.777
T20-90.2132 126.66.460.715892.829.083.509
T20-120.2032 694.99.800.8751 098.555.320.625
T16-90.1812 311.37.660.576756.520.122.834
T10-90.1622 630.88.470.818688.113.851.935

图6

四阶段模型断裂韧度"

图7

混凝土断裂过程的划分与描述[7]"

图8

KICun、KICmicro对比示意图"

表6

双线性软化曲线控制参数"

编号Gfini/ (N·m-1ψkw1/mmws/mmσs/MPaw0/mm
SU92.70.3130.0460.0331.270.329
P-697.40.4580.0480.0291.850.429
P-9176.20.6830.0870.0322.770.374
P-12176.30.6660.0870.0342.700.551
T20-6185.70.6770.0920.0342.740.456
T20-9188.60.6370.0930.0382.580.557
T20-12159.70.5370.0790.0402.180.817
T16-9211.20.6480.1040.0412.620.481
T10-9337.10.7670.1660.0433.110.397

图9

PPFRC双线性软化本构曲线"

表7

聚丙烯纤维影响系数"

编号P40 macro PPFMicro PPF
T20T16T10
βp0.8490.5520.5060.409

图10

聚丙烯细纤维混凝土三点弯曲梁二维模型"

图11

P-CMOD曲线对比"

图12

模型应力云图"

图13

结构完全失效时刻"

表8

断裂韧度模拟结果"

编号K断裂模型/ (MPa·m1/2四阶段断裂模型/ (MPa·m1/2
KICiniKICunKICmacroKICfailure
SU0.7532.0473.384.08
T10-90.8873.0137.8513.86
T16-90.7882.0466.2221.81
T20-90.7912.6885.7431.18

图14

断裂韧度对比"

1 Güneyisi E, Gesoglu M, Özturan T,et al. Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber[J]. Construction & Building Materials,2015,84:156-168.
2 韩菊红,李明轩,杨孝青,等. 混杂钢纤维二级配混凝土断裂性能试验研究[J]. 土木工程学报,2020,53(9):31-40.
Han Ju-hong, Li Ming-xuan, Yang Xiao-qing, et al. Experimental study on fracture behavior of mixed steel fiber secondary concrete[J]. Journal of Civil Engineering, 2020,53(9):31-40.
3 代继飞. 基于双K准则的多尺寸聚丙烯纤维混凝土断裂韧性研究[D]. 重庆:重庆大学土木工程学院,2017.
Dai Ji-fei. Fracture toughness of multi-size polypropylene fiber reinforced concrete based on double K criterion[D]. Chongqing:School of Civil Engineering, Chongqing University, 2017.
4 梁宁慧,缪庆旭,刘新荣,等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报:工学版,2019,49(4):1144-1152.
Liang Ning-hui, Miao Qing-xu, Liu Xin-rong,et al. Determination of fracture toughness and softening constitutive curve of polypropylene fiber reinforced concrete[J]. Journal of Jilin University(Engineering and Technology Edition), 2019,49(4):1144-1152.
5 左文锌. 基于双K模型的纤维混凝土I型断裂特性研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院,2011.
Zuo Wen-xin. Study on type I fracture characteristics of fiber reinforced concrete based on double K model[D]. Harbin: School of Transportation Science and Engineering,Harbin Institute of Technology,2011.
6 符永康. 混凝土四阶段断裂模型及其在刚性道面断裂分析中的应用[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院,2019:52-71.
Fu Yong-kang. Four-stage fracture model of concrete and its application in fracture analysis of rigid pavement[D]. Harbin:School of Transportation Science and Engineering,Harbin Institute of Technology,2019:52-71.
7 Marzec I, Bobiński J. Quantitative assessment of the influence of tensile softening of concrete in beams under bending by numerical simulations with XFEM and cohesive cracks[J]. Materials,2022,15(2): No.626.
8 伍江飞. 基于黏聚裂纹模型的混凝土断裂过程扩展有限元法模拟[J]. 水利水电技术,2019,50(4):205-211.
Wu Jiang-fei. Simulation of concrete fracture process by extended finite element method based on cohesive crack model[J]. Water Conservancy and Hydropower Technology, 2019,50(4):205-211.
9 Tawfik A B, Mahfouz S Y, Taher S E-D F. Nonlinear ABAQUS simulations for notched concrete beams[J]. Materials,2021,14(23): No.7349.
10 雷志鹏. 基于扩展有限元法的混凝土梁开裂特性研究[D]. 广州:华南理工大学土木与交通学院,2017.
Lei Zhi-peng. Cracking characteristics of concrete beams based on extended finite element method[D]. Guangzhou: School of Civil Engineering and Transportation, South China University of Technology, 2017.
11 齐西力. 基于断裂力学与扩展有限元对混凝土开裂扩展的研究[D]. 贵阳:贵州大学土木工程学院,2017.
Qi Xi-li. Study on crack propagation of concrete based on fracture mechanics and extension finite element[D]. Guiyang: College of Civil Engineering, Guizhou University, 2017.
12 2:2006.
Fibres for concrete—part 2: polymer fibres—definitions,specifications and conformity [S].
13 .水泥混凝土和砂浆用合成纤维 [S].
14 周兴宇. 多尺度聚丙烯纤维混凝土性能研究[D]. 扬州:扬州大学建筑科学与工程学院,2020.
Zhou Xing-yu. Study on properties of multi-scale polypropylene fiber concrete[D]. Yangzhou: College of Architectural Science and Engineering,Yangzhou University, 2020.
15 RILEM Committee FMT 89. Determination of fracture parameter Kc and CTOD of plain concrete using three point bend tests[J]. Materials and Structures,1990,23:457-460.
16 RILEM Committee FMC 50. Determination of the fracture energy of mortar and concrete by means of the three-point bend test[J]. Materials and Structures,1985,18:285-290.
17 RILEM Committee FMT 89. Size effect method for determining fracture energy and process zone size of concrete[J]. Materials and Structures,1990,23:461-465.
18 徐世烺,赵艳华. 混凝土裂缝扩展的断裂过程准则与解析[J]. 工程力学,2008,25():20-33.
Xu Shi-lang, Zhao Yan-hua. Fracture process criterion and analysis of concrete crack propagation[J]. Engineering Mechanics, 2008,25(Sup.2):20-33.
19 Gaedicke C, Roesler J, Jr F E. Three-dimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil[J]. Engineering Fracture Mechanics,2012,94(4):6-12.
20 Hu X J, Duan K. Influence of fracture process zone height on fracture energy of concret[J].Cement and Concrete Research,2004,34(8):1321-1330.
21 李东洋. 湿热环境下 CFRP 加固 RC 梁疲劳主裂纹扩展规律研究[D]. 广州:华南理工大学土木与交通学院,2018.
Li Dong-yang. Study on fatigue main crack propagation law of RC beams reinforced by CFRP under humid and hot environment [D]. Guangzhou: School of Civil Engineering and Transportation,South China University of Technology, 2018.
[1] 张广泰,周乘孝,刘诗拓. 盐渍土环境下纤维锂渣混凝土柱恢复力模型[J]. 吉林大学学报(工学版), 2024, 54(7): 1944-1957.
[2] 陈凯祥,张鹤年,席培胜,王长丹,余涛,张炳锌. 碳化湿度对碳化砌块力学与耐久性能的影响[J]. 吉林大学学报(工学版), 2024, 54(2): 445-452.
[3] 秦拥军,陈楠,蔺鹏杰,于江. 掺锂渣再生混凝土三点弯曲梁双K断裂特性[J]. 吉林大学学报(工学版), 2021, 51(6): 2121-2127.
[4] 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945.
[5] 袁杰,陈歆,何虹霖,杨博,朱小骏. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报(工学版), 2020, 50(2): 641-647.
[6] 何娟,程从密,杨毅男,张亚芳,钟明峰. 湿热养护时掺合料对玻纤增强水泥性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 648-653.
[7] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[8] 高小建, 孙博超, 叶焕, 王子龙. 矿物掺合料对自密实混凝土流变性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 439-444.
[9] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671-676.
[10] 孟松鹤, 高慧婷, 孙莉安, 史洪军. 硅灰-矿渣对聚丙烯纤维混凝土性能的影响[J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217.
[11] 刘寒冰,何岩,魏海斌,刘昊. 聚丙烯纤维改良粉煤灰土的动力特性[J]. 吉林大学学报(工学版), 2010, 40(03): 672-0675.
[12] 刘寒冰, 何岩, 魏海斌, 葛琪. 聚丙烯纤维改良粉煤灰土[J]. 吉林大学学报(工学版), 2010, 40(02): 431-0434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!