吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 2819-2826.doi: 10.13229/j.cnki.jdxbgxb.20221574

• 交通运输工程·土木工程 • 上一篇    

老年驾驶员事故严重程度影响因素时间不稳定性分析

潘义勇(),吴静婷,缪炫烨   

  1. 南京林业大学 汽车与交通工程学院,南京 210037
  • 收稿日期:2022-12-08 出版日期:2024-10-01 发布日期:2024-11-22
  • 作者简介:潘义勇(1980-),男,副教授,博士.研究方向:交通运输规划与管理.E-mail:uoupanyg@njfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51508280)

Temporal instability analysis of factors affecting injury severities of elderly drivers

Yi-yong PAN(),Jing-ting WU,Xuan-ye Miao   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2022-12-08 Online:2024-10-01 Published:2024-11-22

摘要:

为探究时间不稳定性对事故伤害严重程度的影响,本文构建基于均值和方差异质性的随机参数Logit模型对老年驾驶员事故伤害严重程度进行异质性分析。采用2015~2017年老年人交通事故数据,从老年人特性、车辆特性、道路特性、道路环境特性、建成环境特性这5个方面选取19个影响因素,利用平均边际效应捕捉各因素对事故伤害严重程度的影响变化,通过对数似然比检验事故伤害严重程度影响因素的整体和局部时间不稳定性。结果表明:老年驾驶员事故严重程度影响因素存在显著的时间不稳定性,碰撞后逃逸、事故发生在农村、道路表面环境为干燥3个因素对事故伤害严重程度的影响随年份正负变化,建成环境特性中事故发生在商业区对重伤事故伤害严重程度的影响随年份正负变化;老年驾驶员事故严重程度影响因素异质性存在时间不稳定性,随机参数和年份相关,其均值和方差的影响因素在不同年份中存在显著差异。

关键词: 交通工程, 事故严重程度, 均值和方差异质性的随机参数Logit, 老年驾驶员, 时间不稳定性

Abstract:

In order to explore the influence of temporal instability on crash injury severities, a random parameter approach with heterogeneity in means and variances was constructed to analyze the heterogeneity of elderly driver injury severities. The 2015 to 2017 traffic crash data in a state of the United States was used for the analysis. 19 influencing factors were selected based on the characteristics of elderly, vehicle, road, road environment, and built environment. The average marginal effect was used to reflect the effect of each factor on the crash injury severities. The log likelihood ratio was used to test the global and local temporal instability of the influencing factors of crash injury severities. The results show that there is significant temporal instability in the influencing factors of elderly driver injury severities. The influence of three factors on the injury severities, namely, escape after collision, rural area and dry road surface environment, changes positively and negatively with years. In the built environment characteristics, the influence of crash occurring in commercial district on the serious injury severities changes positively and negatively with years. There is temporal instability in the heterogeneity of influencing factors of elderly driver injury severities. The random parameters are related to years and the influencing factors of their mean and variance are significantly different in years.

Key words: traffic engineering, crash injury severity, random parameter Logit with heterogeneity in means and variances, elderly drivers, temporal instability

中图分类号: 

  • U491.31

表1

事故数据分布"

事故类型2015年2016年2017年
仅财产损失3 035(72.8%)2 912(81.2%)3 434(79.8%)
轻伤1 042(25.0%)587(16.4%)770(17.9%)
重伤88(2.2%)86(2.4%)98(2.3%)

表2

2015—2017年模型参数估计"

自变量2015年2016年2017年
参数z-值参数z-值参数z-值
截距[MI]0.9334.561.8065.93-1.231-3.16
截距标准差[MI]0.9352.92
截距[SI]-16.07-2.59
截距标准差[SI]9.1902.42
驾驶员 特性驾驶员身体状况为正常[CI]1.47510.091.7817.56
驾驶员身体状况为正常[MI]-0.965-10.23
驾驶员身体状况为生病[MI]0.3912.31-0.965-10.23
驾驶员身体状况为生病[SI]3.8174.32
驾驶员身体状况为疲劳[MI]-0.933-3.54
驾驶员身体状况为其他[SI]1.1916.181.8056.68
驾驶员性别为男性[MI]-0.234-2.32
驾驶员性别为男性[SI]1.9191.60
驾驶员性别为女性[SI]-0.669-2.52
碰撞后逃逸[CI]2.1355.30
碰撞后逃逸[MI]1.3110.73
碰撞后没有逃逸[MI]1.2963.65
驾驶员未分心[SI]-1.691-8.72-1.759-2.93

车辆

特性

车辆速度为[0,10] km/h[CI]2.1442.551.0803.17
车辆速度为(10,20] km/h[CI]0.6353.08
车辆速度为(20,30] km/h[CI]0.5622.91
车辆速度为(20,30] km/h[MI]-0.245-1.84
车辆速度为[50,60] km/h[MI]0.2662.42
车辆类型为摩托车[CI]-3.632-6.74
车辆类型为摩托车[MI]3.51311.63
车辆类型为SUV[CI]-2.2930.33-0.259-2.40
车辆类型为小汽车[CI]0.3994.14
安全气囊未蹦出[CI]1.44811.11
安全气囊未蹦出[MI]-1.593-8.87-1.281-13.50

道路

特性

下坡[CI]-0.655-2.19
山底/山顶[CI]1.2932.07
T/Y[CI]-0.381-1.99
单车道[CI]3.3671.64
信号控制[CI]0.59911.12
2条车道[MI]0.4763.53
3条车道[MI]-0.869-2.58
直线[CI]0.6055.77
直线[MI]-0.539-4.99

环境

特性

下雨[CI]0.6983.42
天晴[CI]-0.26010.10
发生在工作区[CI]1.8876.19
发生在工作区标准差[CI]5.2901.54
发生在农村[CI]0.7370.36-0.374-3.61
发生在农村[MI]0.4522.99
干燥[CI]-0.177-1.56
干燥[SI]-1.574-5.16
黑暗有灯光[CI]0.4462.380.3642.45
黑暗有灯光[SI]-1.008-2.54
黎明/黄昏[MI]-0.495-2.16
天亮[MI]0.2992.90

建成

环境

特性

300 m缓冲区内存在公园[CI]-1.735-1.86
300 m缓冲区内存在银行[MI]1.2031.57
事故发生在商业区[SI]-1.175-1.572.0831.82

均值异

质性

截距:农村 [MI]0.4936.18
事故发生在工作区:碰撞后逃逸[CI]3.6301.82
截距:直线[SI]-3.632-21.93

方差异

质性

截距:速度为[0,10] [MI]1.0701.070
事故发生在工作区:单车道[CI]1.1172.29
截距:摩托车[SI]0.4622.84

模型

估计

样本数量4 5903 5904 299
仅含常数的对数似然-5 438.130-3 944.01-4 722.934
模型收敛的对数似然-2 547.387-1 643.57-1 988.858
McFadden ρ20.5320.5830.579

表3

全局对数似然比检验"

(ti,ti+1)LL(βtiti+1)LL(βti)LL(βti+1)χT2自由度置信水平
(2015,2016)-4 338.653-2 547.020-1 643.547296.17219[>99.99%]
(2016,2017)-3 697.333-1 643.547-1 988.858129.85612[>99.99%]

表4

局部对数似然比检验"

(ti,tj)χL2自由度置信水平
(2015,2016)311.29521[>99.99%]
(2015,2017)326.32421[>99.99%]
(2016,2015)137.13227[>99.99%]
(2016,2017)30.02821[>95.00%]
(2017,2015)83.86827[>99.99%]
(2017,2016)83.73021[>95.00%]

表5

2015~2017年各影响因素的边际效应值"

变量仅财产损失事故轻伤事故重伤事故
201520162017201520162017201520162017
驾驶员特性驾驶员身体状况为正常0.123 20.115 80.079 9-0.119 7-0.107 1-0.082 9-0.010 8-0.012 50.000 9
驾驶员身体状况为生病-0.003 8-0.001 40.011 2-0.002 2-0.000 80.011 7
驾驶员身体状况为疲劳0.003 3-0.004 80.001 0
驾驶员身体状况为其他-0.004 6-0.006 4-0.010 9-0.017 00.094 60.106 7
驾驶员性别为男性0.015 8-0.003 4-0.025 4-0.002 40.011 60.012 1
驾驶员性别为女性0.001 30.001 8-0.006 8
碰撞后逃逸0.004 0-0.001 2-0.001 20.000 9-0.001 7-0.000 1
碰撞后没有逃逸-0.146 50.211 9-0.003 1
驾驶员未分心0.007 60.008 30.018 30.005 8-0.029 5-0.011 2
车辆特性车辆速度[0,10] km/h0.008 60.003 9-0.003 8-0.002 1-0.002 1-0.001 3
车辆速度(10,20] km/h0.004 4-0.002 8-0.000 6
车辆速度(20,30] km/h0.003 30.006 3-0.005 1-0.007 80.002 2-0.003 5
车辆速度[50,60] km/h-0.005 70.00950.001 9
车辆类型为摩托车-0.003 1-0.002 40.017 7-0.10190.010 0-0.001 7
车辆类型为SUV-0.008 8-0.006 00.061 40.01020.013 70.000 3
车辆类型为小汽车0.020 3-0.019 2-0.006 2
安全气囊未蹦出0.120 10.089 10.110 3-0.088 1-0.104 7-0.1019-0.035 6-0.044 80.001 9
道路特性下坡-0.002 70.004 60.001 9
山底/山顶0.000 8-0.000 50.000 0
T/Y-0.002 50.004 10.000 1
单车道0.012 7-0.006 0-0.003 9
信号控制0.002 5-0.003 6-0.000 8
2条车道-0.019 70.038 1-0.008 5
3条车道0.002 1-0.001 90.001 6
直线0.056 50.051 8-0.061 7-0.0651-0.020 70.000 5
环境特性下雨0.006 3-0.004 2-0.007 3
天晴-0.006 60.008 80.003 3
发生在工作区0.080 2-0.164 3-0.060 1
发生在农村0.006 6-0.026 9-0.0322-0.001 20.050 70.0478-0.002 7-0.011 00.001 3
干燥0.010 7-0.01700.020 00.2440-0.064 90.000 8
黑暗有灯光0.000 80.004 80.00460.001 0-0.005 8-0.0054-0.004 1-0.002 6-0.000 3
黄昏/黎明0.002 5-0.002 80.002 8
白天-0.020 50.032 1-0.009 1
建成环境300 m缓冲区内存在公园-0.000 70.001 40.000 5
300 m缓冲区内存在银行-0.000 60.001 0-0.000 1
事故发生在商业区0.000 4-0.00060.000 5-0.0003-0.000 70.002 3
1 胡立伟, 吕一帆, 赵雪亭, 等. 基于数据驱动的交通事故伤害程度影响因素及其耦合关系研究[J]. 交通运输系统工程与信息, 2022, 22(5):117-124, 134.
Hu Li-wei, Yi-fan Lyu, Zhao Xue-ting, et al. Influence factors and coupling relationship of traffic accident injury degree based on a data-driven approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2022,22(5):117-124, 134.
2 Lin Z J, Fan W. Injury severity analysis of cyclists using a mixed logit model of intersection and non-intersection location[J]. Journal of Transport Safety and security, 2021, 13(2):223-245.
3 Moudon A V, Lin L, Jiao J, et al. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington[J]. Accid Anal Prev, 2011, 43(1):11-24.
4 潘义勇, 吴静婷, 施颖, 等. 建成环境对老年人交通事故严重程度异质性影响[J]. 交通运输系统工程与信息, 2022, 22(3):224-230.
Pan Yi-yong, Wu Jing-ting, Shi Ying, et al. Heterogeneous effects of built environment on elderly traffic accident injury severities[J]. Journal of Transportation Systems Engineering and Information Technology, 2022,22(3):224-230.
5 Aziz H M A, Ukkusuri S V, Hasan S. Exploring the determinants of pedestrian-vehicle crash severity in New York City[J]. Crash Analysis & Prevention, 2013, 50(1):1298-1309.
6 Mannering F L. Temporal instability and the analysis of highway crash data[J]. Analytic Methods in Crash Research, 2018, 17:1-13.
7 Behnood A, Mannering F L. The temporal stability of factors affecting driver-injury severities in single-vehicle crashes: some empirical evidence[J]. Analytic Methods in Crash Research, 2015, 8:7-32.
8 Malyshkina N V, Mannering F L. Markov switching multinomial logit model: an application to crash-injury severities[J]. Crash Analysis & Prevention, 2009, 41(4):829-838.
9 Behnood A, Mannering F L. An empirical assessment of the effects of economic recessions on pedestrian-injury crashes using mixed and latent-class models[J]. Analytic Methods in Crash Research, 2016, 12:1-17.
10 温惠英, 汤左淦, 卢德佑. 考虑异质性的翻车事故伤害建模[J]. 中国安全科学学报, 2018, 28(9):13-18.
Wen Hui-ying, Tang Zuo-gan, Lu De-you. Modeling severity of rollover accidents accounting for heterogeneity[J]. Chinese Journal of Safety Science, 2018,28(9):13-18
11 宋栋栋, 杨小宝, 祖兴水, 等. 基于均值异质性随机参数Logit模型的城市道路事故驾驶员受伤严重程度研究[J]. 交通运输系统工程与信息, 2021, 21(3):214-220.
Song Dong-dong, Yang Xiao-bao, Zu Xing-shui, et al. Research on the injury severity of drivers in urban road crashs based on mean heterogeneity random parameter Logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021,21(3): 214-220.
[1] 周荣贵,高沛,李雨璇,周建. 基于轨迹数据的高速公路小客车异常驾驶行为[J]. 吉林大学学报(工学版), 2024, 54(9): 2581-2587.
[2] 许清津,付锐,郭应时,吴付威. 载货汽车弯道侧翻路侧预测方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1302-1310.
[3] 蒲云,徐银,刘海旭,谭一帆. 考虑多车影响的智能网联车跟驰模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1285-1292.
[4] 马庆禄,闫浩,聂振宇,李杨梅. 匝道合流区智能网联车辆协同控制方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1332-1346.
[5] 曹倩,李志慧,陶鹏飞,李海涛,马永建. 面向交通事故检测及预防的异质传感器布设方法[J]. 吉林大学学报(工学版), 2024, 54(4): 969-978.
[6] 张鑫,胡启洲,何君,吴啸宇. 考虑交通梗塞的合流区交通状况诊断[J]. 吉林大学学报(工学版), 2024, 54(2): 478-484.
[7] 张卫华,刘嘉茗,解立鹏,丁恒. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2024, 54(2): 469-477.
[8] 岳昊,张琦悦,杨子玉,任孟杰,张旭. 拥堵空间排队的静态交通流分配迭代加权算法[J]. 吉林大学学报(工学版), 2024, 54(1): 136-145.
[9] 杜筱婧,姚荣涵. 智能网联公交车出站强制换道的演化博弈机制[J]. 吉林大学学报(工学版), 2024, 54(1): 124-135.
[10] 马壮林,崔姗姗,胡大伟,王晋. 限行政策下传统小汽车出行者出行方式选择[J]. 吉林大学学报(工学版), 2023, 53(7): 1981-1993.
[11] 张雅丽,付锐,袁伟,郭应时. 考虑能耗的进出站驾驶风格分类及识别模型[J]. 吉林大学学报(工学版), 2023, 53(7): 2029-2042.
[12] 尹超英,陆颖,邵春福,马健霄,许得杰. 考虑空间自相关的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1994-2000.
[13] 潘恒彦,王永岗,李德林,陈俊先,宋杰,杨钰泉. 基于交通冲突的长纵坡路段追尾风险评估及预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1355-1363.
[14] 宋灿灿,荆迪菲,谢俊峰,康可心. 设置广告牌的高速公路平曲线路段驾驶行为分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1345-1354.
[15] 卢凯,徐广辉,叶志宏,林永杰. 考虑清空时间的双向队首绿波协调控制数解算法[J]. 吉林大学学报(工学版), 2023, 53(2): 421-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!