吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 2009-2014.doi: 10.13229/j.cnki.jdxbgxb.20230035

• 交通运输工程·土木工程 • 上一篇    

基于长短期记忆网络的公共建筑短期能耗预测模型

朱国庆1(),刘显成1,田从祥2()   

  1. 1.长江大学 城市建设学院,湖北 荆州 434023
    2.长江大学 文理学院,湖北 荆州 434020
  • 收稿日期:2023-01-11 出版日期:2024-07-01 发布日期:2024-08-05
  • 通讯作者: 田从祥 E-mail:zhuguoqing0120@163.com;703216@yangtzeu.edu.cn
  • 作者简介:朱国庆(1979-),男,副教授.研究方向:城市更新与遗产保护,绿色建筑与建筑节能.E-mail: zhuguoqing0120@163.com
  • 基金资助:
    教育部产学合作协同育人项目(231103242251727);湖北省教育厅科学技术研究项目(2023-081);湖北省教育厅哲学社会科学研究项目(23Y155);荆州市科学技术局联合科研基金项目(2023LHX01)

Short-term energy consumption prediction model of public buildings based on short-term memory network

Guo-qing ZHU1(),Xian-cheng LIU1,Cong-xiang TIAN2()   

  1. 1.School of Urban Construction,Yangtze University,Jingzhou 434023,China
    2.Yangtze University College of Arts and Sciences,Jingzhou 434020,China
  • Received:2023-01-11 Online:2024-07-01 Published:2024-08-05
  • Contact: Cong-xiang TIAN E-mail:zhuguoqing0120@163.com;703216@yangtzeu.edu.cn

摘要:

为了提高公共建筑短期能耗预测的精度、泛化能力和鲁棒性能,提出一种基于长短期记忆网络的公共建筑短期能耗预测模型。使用长短期记忆网络作为公共建筑能耗特征提取器,在不断迭代的过程中保留有价值的能耗历史数据,通过自主学习与自组织调整不同时序的输出,并引入灰色系统,减少所需样本数据数量和缩小误差。采用最小乘二法计算输出权值,获得长短期记忆网络下的预测值,将经反归一函数处理后的结果累减计算,得到建筑能耗短期预测值。实验结果证明:本文方法能耗预测能力优秀,可以有效地用于公共建筑能耗预测。

关键词: 长短期记忆网络, 灰色系统, 公共建筑能耗, 预测模型, 反归一化函数, 记忆单元

Abstract:

In order to improve the accuracy, generalization and robustness of short-term energy consumption prediction for public buildings, a short-term energy consumption prediction model for public buildings based on short-term memory network was proposed. The long-term and short-term memory network is used as the energy consumption feature extractor of public buildings to retain valuable historical energy consumption data in the process of continuous iteration, adjust the output of different time sequences through autonomous learning and self-organization, and introduce the gray system to reduce the number of sample data required and reduce errors. The output weight value is calculated by the minimum multiplication method to obtain the prediction value under the long-term and short-term memory network. The short-term prediction value of building energy consumption is obtained by accumulating the results after the inverse normalization function processing. The experimental results show that the proposed method has excellent energy consumption prediction ability and can be effectively used for public building energy consumption prediction.

Key words: short-term memory network, grey system, energy consumption of public buildings, forecast model, inverse normalization function, memory unit

中图分类号: 

  • TP267

表1

各个指标与建筑用电量之间的关系"

影响变量指标与建筑耗电量之间的关系
建筑面积该指标与建筑总耗电量为线性关系,同比例增加
人均可支配收入该指标与建筑总耗电量高度相关
月份周期变量该指标可以显示建筑耗电量的周期长短情况
月份序列变量该指标可以显示建筑耗电量的增长情况
夏季度平均小时该指标明显偏向于建筑耗电量中的空调制冷耗电量
冬季度平均小时该指标明显偏向于建筑耗电量中的供暖供热耗电量

图1

长短期记忆网络单元结构"

图2

灰色长短期记忆网络能耗预测流程图"

图3

不同预测模型预测精度对比图"

图4

3种方法建筑预测模型绝对误差对比图"

图5

泛化能力证明"

1 刘晓君,胡升凯,李玲燕. 中国省区建筑能耗时空分布与影响因素分析[J]. 数学的实践与认识, 2020,50(6):74-85.
Liu Xiao-jun, Hu Sheng-kai, Li Ling-yan. Temporal and spatial changes of building energy consumption in China´s provinces and analysis of its influencing factors[J]. Mathematics in Practice and Theory, 2020, 50(6): 74-85.
2 季天瑶,王挺韶. 基于词嵌入与卷积神经网络的建筑能耗预测[J]. 华南理工大学学报:自然科学版, 2021, 49(6):40-48.
Ji Tian-yao, Wang Ting-shao. Building energy consumption prediction based on word embedding and convolutional neural network[J]. Journal of South China University of Technology(Natural Science Edition), 2021,49(6): 40-48.
3 肖冉,魏子清,翟晓强.基于支持向量机的办公建筑逐时能耗预测[J].上海交通大学学报,2021,55(3):331-336.
Xiao Ran, Wei Zi-qing, Zhai Xiao-qiang. Hourly energy consumption forecasting for office buildings based on support vector machin[J]. Journal of Shanghai Jiaotong University, 2021,55(3): 331-336.
4 王洪亮,穆龙新,时付更,等.基于循环神经网络的油田特高含水期产量预测方法[J].石油勘探与开发,2020,47(5):1009-1015.
Wang Hong-liang, Mu Long-xin, Shi Fu-geng, et al. Production prediction at ultra-high water cut stage via recurrent neural network[J]. Petroleum Exploration and Development, 2020, 47(5): 1009-1015.
5 Nguyen T, Le H N, Ngo V H, et al. CRITIC method and grey system theory in the study of Global electric cars[J]. World Electric Vehicle Journal, 2020, 11(4):1-15.
6 Yang F, Du L, Yu H, et al. Magnetic and electric energy harvesting technologies in power grids: a review[J]. Sensors, 2020, 20(5):No.1496.
7 许浩源,李媛媛.GA-BP神经网络对SAW压力传感器测量数据的拟合[J].电子测量与仪器学报,2021,35(4):7-14.
Xu Hao-yuan, Li Yuan-yuan. Fitting analysis of SAW micro pressure sensor measurement data by ga optimized BP neural network[J]. Journal of Electronic Measurement and Instrumentation, 2021,35(4): 7-14.
8 Benjamin K, Luo Z, Wang X. Crowdsourcing urban air temperature data for estimating urban heat island and building heating/cooling load in london[J]. Energies, 2021, 14(16):No.5208.
9 Sun F, Li C. A comprehensive evaluation method and application of shield tunnel structure health based on variable weight theory[J]. International Journal of Structural Integrity, 2022(3):394-410.
10 Fujiwara T, Hoshide S, Kanegae H, et al. Clinical impact of the maximum mean value of home blood pressure on cardiovascular outcomes: a novel indicator of home blood pressure variability[J]. Hypertension, 2021, 78(3): 840-850.
11 吕大千.基于精密单点定位的GNSS时间同步方法研究[J].测绘学报,2022,51(2):315.
Da-qian Lyu. Research on GNSS time synchronization method based on precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2022,51(2): 315.
12 Zheng M, Li T, Zhu R, et al. Conditional wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification[J].Information Sciences,2020,512:1009-1023.
13 张林,赖向平,仲书勇,等.基于正交小波和长短期记忆神经网络的用电负荷预测方法[J].现代电力,2022,39(1):72-79.
Zhang Lin, Lai Xiang-ping, Zhong Shu-yong, et al. Electricity load forecasting method based on orthogonal wavelet and long short-term memory neural networks[J]. Modern Electric Power, 2022, 39(1): 72-79.
14 侯耀斌,冯巍巍,蔡宗岐,等.基于神经网络模型的海水硝酸盐测量方法研究[J].光谱学与光谱分析,2020,40(10):3211-3216.
Hou Yao-bin, Feng Wei-wei, Cai Zong-qi, et al. Nitrate measurement in the ocean based on neural network model[J]. Spectroscopy and Spectral Analysis, 2020,40(10): 3211-3216.
15 孟先艳,崔荣一,赵亚慧,等.基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法[J].计算机应用研究,2020,37(9):2669-2673.
Meng Xian-yan, Cui Rong-yi, Zhao Ya-hui, et al. Multilingual text classification method based on bi-directional long short-term memory and convolutional neural network[J]. Application Research of Computers, 2020,37(9): 2669-2673.
16 Albalawi F, Alshehri S, Chahid A, et al. Voxel weight matrix-based feature extraction for biomedical applications[J]. IEEE Access, 2020(8):121451-121459.
17 Shivappriya S N, Priyadarsini M, Stateczny A, et al. Cascade object detection and remote sensing object detection method based on trainable activation function[J]. Remote Sensing, 2021, 13(2):No.13020200.
18 陈诗雨,李小勇,杜杨杨,等.Fourier神经网络非线性拟合性能优化研究[J].武汉大学学报:工学版,2020,53(3):277-282.
Chen Shi-yu, Li Xiao-yong, Du Yang-yang, et al. Optimization study of Fourier neural network nonlinear fitting performance[J]. Journal of Wuhan University (Engineering Edition), 2020,53(3): 277-282.
19 Zhang J, Sun L, Zhong Y, et al. Kinetic model and parameters optimization for Tangkou bituminous coal by the bi-Gaussian function and Shuffled complex evolution[J]. Energy, 2022,243(3):No.123012.
20 Liu Y, Ma S, Du X. An improved k-means algorithm based on a new cluster center selection method[J]. IEEE Access, 2020(99):No.3044069.
[1] 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202.
[2] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[3] 王学智,李清亮,李文辉. 融合迁移学习的土壤湿度预测时空模型[J]. 吉林大学学报(工学版), 2022, 52(3): 675-683.
[4] 方宇,孙立军. 基于生存分析的城市桥梁使用性能衰变模型[J]. 吉林大学学报(工学版), 2020, 50(2): 557-564.
[5] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[6] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[7] 马知行, 赵琦, 张浩. 基于傅立叶分析的持家基因预测模型[J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643.
[8] 郭洪强, 何洪文, 卢兵. 电动汽车复合制动预测模型[J]. 吉林大学学报(工学版), 2015, 45(3): 696-702.
[9] 袁媛, 张焕杰, 苗雨田, 吴思佳, 林松毅, 刘静波. 鲜切薯片油炸过程中丙烯酰胺形成的贡献率[J]. 吉林大学学报(工学版), 2014, 44(5): 1525-1530.
[10] 高振海, 吴涛, 赵会. 车辆虚拟跟随避撞中驾驶人制动时刻模型[J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239.
[11] 王宝杰, 王炜, 杨敏, 华雪东. 基于Kalman滤波行程时间预测的BRT车速诱导[J]. 吉林大学学报(工学版), 2014, 44(01): 41-46.
[12] 司建波, 杨芳, 郭蔚莹, 姚燕. 基于BP神经网络的两阶段疾病预测模型[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 481-484.
[13] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654-658.
[14] 谭国金, 王龙林, 程永春. 基于灰色系统理论的寒冷地区斜拉桥索力状态预测方法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[15] 苏丽俐, 王登峰, 王倩. 基于GRNN的车内噪声品质预测[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 82-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!