吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 105-115.doi: 10.13229/j.cnki.jdxbgxb.20230215

• 车辆工程·机械工程 • 上一篇    

基于PCA-SSA-XGBoost的车辆驾驶性评估

吴飞(),王鹏程,杨康   

  1. 武汉理工大学 机电工程学院,武汉 430070
  • 收稿日期:2023-03-10 出版日期:2025-01-01 发布日期:2025-03-28
  • 作者简介:吴飞(1973-),男,教授,博士.研究方向:汽车零部件性能检测,机械振动分析,CAD/CAM,数控技术.E-mail: wufei@whut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52275505)

Drivability evaluation model based on PCA-SSA-XGBoost

Fei WU(),Peng-cheng WANG,Kang YANG   

  1. School of Mechanical & Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China
  • Received:2023-03-10 Online:2025-01-01 Published:2025-03-28

摘要:

为提高车辆驾驶性评估的效率与质量,提出了一种基于主成分分析、极限梯度提升树和麻雀优化算法的驾驶性评估模型。以双离合变速箱(Dual clutch transmission,DCT)车辆动力升挡为典型工况,研究并定义了动力升挡工况下的18项客观评价指标,利用主成分分析法对客观评价指标进行约简,降低其冗余性与耦合性,优化了模型输入样本,训练极限梯度提升树模型对驾驶性主观评分进行预测,并采用麻雀算法优化极限梯度提升树的核心超参数,提高模型精度与稳定性。道路试验表明:经主成分分析约简客观评价指标后,模型评估准确率达97%,优于BPNN(90%)、SVM(91%)、ELM(92%)与SSA-XGBoost(95%)。证明了本文PCA-SSA-XGBoost模型的准确性与稳定性优于其他模型,能更有效地完成驾驶性评估。该评估模型可迁移应用于其他驾驶工况,对于解决驾驶性评估中的主客观映射问题具有应用价值。

关键词: 驾驶性, 主成分分析, 麻雀算法, 极限梯度提升树

Abstract:

To improve the efficiency and quality of vehicle driveability evaluation, a driving evaluation model based on principal component analysis, limit gradient lifting tree and Sparrow optimization algorithm was proposed.The dynamic upshift of Dual clutch transmission(DCT) vehicle is taken as a typical working condition, and 18 objective evaluation indexes are studied and defined. Principal component analysis was used to reduce the objective evaluation index, reduce its redundancy and coupling. The Extreme Gradient Boosting algorithm model was trained to predict the subjective driving score, and the Sparrow algorithm was used to improve the accuracy and stability of the model. The road test shows that the accuracy of the model is 97% after the objective evaluation index is reduced by principal component analysis. It is better than BPNN(90%), SVM(91%), ELM(92%) and SSA-XGBoost (95%). It is proved that the accuracy and stability of the proposed PCA-SSA-XGBoost model are better than other models, and can complete the driving evaluation more effectively.The evaluation model can be applied to other driving conditions and has application value to solve the problem of subjective and objective mapping in driving evaluation.

Key words: drivability, principal component analysis, sparrow algorithm, extreme gradient boosting algorithm

中图分类号: 

  • U461

图1

信号采集系统"

表1

信号汇总表"

信号名称单位信号名称单位
发动机转速(E)r/min发动机扭矩(ET)N·m
输入轴转速(EI)r/min车速(vkm/h
输出轴转速(EO)r/min加速度(am/s2
离合器1扭矩(CT1)N·m油门开度(TO)%
离合器2扭矩(CT2)N·m踏板角度(PO)-
离合器1状态(CS1)-目标挡位(TG)-
离合器2状态(CS2)-当前挡位(CG)-

图2

客观指标示意图"

表2

动力升挡客观评价指标"

指标单位定义
Dds升挡响应时间
Tds升挡持续时间
Rds传动比变化时间
GSds扭矩传递时间
ameanm/s2纵向加速度算术平均值
apeakm/s2纵向加速度峰值
Δaholem/s2纵向加速度最大扰动值
Δapeak-peakm/s2纵向加速度峰峰值
agrad-纵向加速度最大梯度
jpeakm/s3冲击度峰值
jgrad-冲击度最大梯度
VDVshiftm/s1.75纵向冲击剂量值
ΔEpeakr/min发动机转速超调
Egrad-发动机转速梯度
Vδ-车速变化线性度
alossm/s2平均加速度损失
ΔCTsN·m结合初始扭矩振荡
ΔCTdN·m结合结束扭矩振荡

图3

评估模型构建流程图"

图4

主观评分标准"

表3

寻优范围"

超参数寻优范围
max_depth115
min_child_weight110
learning_rate[0.01,0.2]

图5

碎石图"

表4

客观指标方差贡献率"

成分初始特征值主成分提取

特征

方差百分比/%累积/%

特征

方差百分比/%累积/%
F16.48936.05136.0516.48936.05136.051
F22.69914.99451.0452.69914.99451.045
F31.80410.02061.0661.80410.0261.066
F41.5788.76669.8311.5788.76669.831
F51.0555.85975.6901.0555.85975.69
F60.9375.20780.8970.9375.20780.897
F70.7624.23385.1300.7624.23385.13
F80.6133.40888.5370.6133.40888.537
F90.5653.13891.6750.5653.13891.675
F100.4282.37694.052---
F110.3792.10396.155---
F120.3211.78197.936---
F130.1941.07799.013---
F140.0910.50899.522---
F150.0630.35299.874---
F160.0180.10199.975---
F170.0030.01599.990---
F180.0020.010100.000---

表5

载荷系数表"

特征指标载荷系数
F1F2F3F4F5F6F7F8F9
Dd-0.2060.8290.192-0.1420.0130.3400.0730.160-0.058
Td-0.3980.8130.2750.2240.0510.1020.0350.132-0.032
Rd-0.4430.3240.2180.6290.072-0.312-0.0250.0080.003
GSd0.1080.232-0.377-0.3690.6380.292-0.186-0.201-0.177
amean0.8710.367-0.0770.0480.094-0.0520.067-0.1390.071
apeak0.9620.102-0.0580.0550.031-0.1150.047-0.1020.064
Δahole0.3850.1080.6000.082-0.2480.3620.197-0.3690.093
Δapeak-peak0.894-0.0320.2800.015-0.018-0.117-0.052-0.003-0.110
agrad0.223-0.3130.4870.1950.2960.167-0.5570.1510.339
jpeak0.514-0.3500.603-0.0560.0740.129-0.021-0.072-0.307
jgrad0.037-0.3400.374-0.1350.573-0.130.5470.2500.095
VDVshift0.9400.194-0.0980.0590.044-0.1080.065-0.1080.101
ΔEpeak0.8020.326-0.2700.1010.095-0.0690.049-0.0260.270
Egrad0.620-0.3260.003-0.467-0.3250.042-0.0140.2400.026
Vδ0.6400.494-0.002-0.274-0.1350.005-0.0640.3550.066
aloss-0.680-0.163-0.098-0.188-0.0610.3240.170-0.1080.416
ΔCTs0.348-0.373-0.3870.5840.0660.2360.1080.065-0.018
ΔCTd0.479-0.197-0.2680.471-0.0680.4780.0990.248-0.140

表6

模型构建参数"

模型参数取值
boostergbtree
objectivereg:linear
learning_rate0.098
max_depth8
min_child_weight3
n_estimators300
colsample_bytree1
Subsample0.9
num_parallel_tree1

图6

PCA-SSA-XGBoost模型评估结果"

图 7

模型预测结果对比"

图 8

模型评价指标对比"

表7

模型预测准确率对比"

模  型预测合格率/%
BPNN90
SVM91
ELM92
SSA-XGBoost95
PCA-SSA-XGBoost97
1 Zhou W, Guo X, Pei X, et al. Research on objective drivability evaluation with multi-source information fusion for passenger car[C]∥SAE Papers,2020-01-1044.
2 Koch Andreas, Brauer Jonas, Falkenstein Jens.Drivability optimization of electric vehicle drivetrains for brake blending maneuvers[J].World Electric Vehicle Journal,2022, 13(209): No.13110209.
3 Shin C W, Kim H, Kim M K, et al. Development of an evaluation method for quantitative driveability in heavy-duty vehicles[J].Journal of Mechanical Science and Technology,2014, 28(5): 1615-1621.
4 Chang Woo Shin, Choi Jongdae,Suk Won Cha, et al. An objective method of driveability evaluation using a simulation model for hybrid electric vehicles[J].International Journal of Precision Engineering and Manufacturing,2014, 15(2): 219-226.
5 宋世欣,张元侠,刘科,等.双离合器自动变速器控制品质评价指标分析[J].汽车工程,2015,37(8): 925-930, 958
Song Shi-xin, Zhang Yuan-xia, Liu Ke, et al. Analysis of control quality evaluation index of dual clutch automatic transmission[J]. Automobile Engineering,2015,37(8): 925-930, 958
6 Chandrasekaran K, Rao N, Palraj S,et al. Objective drivability evaluation on compact SUV and comparison with subjective drivability[C]∥SAE Paper, 2017-26-0153, 2017.
7 黄伟,刘海江,童荣辉,等.车辆驾驶性评估方法在蠕行工况中的应用[J].哈尔滨工业大学学报,2018,50(7): 126-130.
Huang Wei, Liu Hai-jiang, Tong Rong-hui,et al. Application of vehicle driveability evaluation method in creep driving condition[J]. Journal of Harbin Institute of Technology, 2018,50(7): 126-130.
8 刘海江,徐新胜,李敏.双离合自动变速器车辆换挡品质模糊综合评价[J].哈尔滨工业大学学报,2020,52(7): 43-51.
Liu Hai-jiang, Xu Xin-sheng, Li Min. Fuzzy comprehensive evaluation of shifting quality of dual clutch Automatic transmission vehicles[J]. Journal of Harbin Institute of Technology,2022,52(7): 43-51.
9 Huang Xin-cheng.A fuzzy evaluation method for the drivability of new energy vehicles based on similarity[J].Journal of Physics: Conference Series,2022, 2218(1): No.012066.
10 Schoeggl Peter, Ramschak Erich.Vehicle driveability assessment using neural networks for development, calibration and quality tests[J].SAE Transactions,2000,109: 1052-1061.
11 张建国. 基于神经网络的AMT换档品质评价方法研究[D]. 长春:吉林大学汽车工程学院, 2007.
Zhang Jian-guo. Research on the evaluation method of AMT shift quality based on neural network[D]. Changchun: College of Automotive Engineering, Jilin University,2007.
12 孙贤安,吴光强.双离合器式自动变速器车辆换挡品质评价系统[J].机械工程学报,2011(8): 146-151.
Sun Xian-an, Wu Guang-qiang. Shift quality evaluation system of dual clutch automatic transmission vehicle[J]. Journal of Mechanical Engineering,2011(8): 146-151.
13 王叶,陶刚,李德晴,等.综合传动换挡品质的误差逆传播神经网络评价方法[J].兵工学报,2014(4): 495-500.
Wang Ye, Tao Gang, Li De-qing,et al. An error back propagation neural network evaluation method for shift quality of integrated transmission[J]. Armaments Engineering Journal,2014(4): 495-500.
14 孙坚.驾驶性评价及其仿真方法研究[D].长春: 吉林大学交通学院,2017.
Sun Jian. Research on drivability Evaluation and Simulation method[D]. Changchun: College of Transpotation, Jilin University,2017.
15 Huang W, Liu H J, Ma Y F, et al.Drivability evaluation model using principal component analysis and optimized extreme learning machine[J]. Journal of Vibration & Control,2019,25(16): 2274-2281.
16 刘海江,邢证.基于粗糙集理论的双离合器自动变速器车辆换挡品质评价指标约简[J].哈尔滨工业大学学报,2021,53(7): 164-170.
Liu Hai-jiang, Xing Zheng. Reduction of shift quality evaluation index of dual clutch automatic transmission vehicle based on rough set theory[J]. Journal of Harbin Institute of Technology,2021,53(7): 164-170.
17 莫易敏,胡恒,王骏,等.基于神经网络的车辆急加速工况驾驶性评价研究[J].汽车技术,2021,(4): 12-18.
Mo Yi-min, Hu Heng, Wang Jun, et al. Research on driving evaluation of vehicle under rapid acceleration condition based on neural network[J]. Automobile Technology,2021(4): 12-18.
18 刘洪波,雷雨龙,张建国,等.双离合器式自动变速器换档品质评价与优化[J].吉林大学学报:工学版,2012,42(6): 1360-1365.
Liu Hong-bo, Lei Yu-long, Zhang Jian-guo, et al. Evaluation and optimization of shift quality of dual clutch automatic transmission[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(6): 1360-1365.
19 王鑫.基于主客观数据的整车驾驶性评价方法研究[D].重庆:重庆大学汽车工程学院,2019.
Wang Xin. Research on vehicle driveability evaluation method based on subjective and objective data[D]. Chongqing: College of Vehicle Engineering, Chongqing University,2019.
20 付尧.基于客观评价的双离合器自动变速器换挡控制技术研究[D].长春:吉林大学汽车工程学院,2015.
Fu Yao. Research on shifting control technology of dual clutch automatic transmission based on objective evaluation[D]. Changchun: College of Automotive Engineering,Jilin University,2015.
21 Heusch C, Guse D, Dorscheidt F,et al.Analysis of drivability influence on tailpipe emissions in early stages of a vehicle development program by means of engine-in-the-loop test benches[C]//SAE Paper,2020-01-0373.
22 Tatas Lauritz,Maximilian Kurt Wick, Birmes Georg.Objectified drivability analysis and evaluation of deceleration maneuvers for electric vehicles[J].SAE International Journal of Engines,2021,14(3): 387-403.
23 李岩,张久鹏,陈子璇,等.基于PCA-PSO-SVM的沥青路面使用性能评价[J].吉林大学学报:工学版,2023,53(6):1729-1735.
Li Yan, Zhang Jiu-peng, Chen Zi-xuan, et al. Performance evaluation of asphalt pavement based on PCA-PSO-SVM[J]. Journal of Jilin University(Engineering and Technology Edition),2023,53(6):1729-1735.
24 刘兴涛,刘晓剑,武骥,等.基于曲线压缩与XGBoost算法的锂离子电池SOH估计[J/OL].[2023-03-03]..
[1] 宋世军,樊敏. 基于随机森林算法的大数据异常检测模型设计[J]. 吉林大学学报(工学版), 2023, 53(9): 2659-2665.
[2] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[3] 张勇飞,陈涛. 基于时间序列模糊分割的通信数据分类算法设计[J]. 吉林大学学报(工学版), 2023, 53(11): 3268-3273.
[4] 蒋林,杨立,张文俊,张琼玉,吴艳霞. 在障碍物检测时对斜坡点云的检测处理算法[J]. 吉林大学学报(工学版), 2023, 53(11): 3221-3228.
[5] 国强,李明松,周凯. 基于势距图与改进云模型的多模雷达分选[J]. 吉林大学学报(工学版), 2022, 52(8): 1904-1911.
[6] 曹振,崔路瑶,雷斌,王婧旖,曹双胜. 城轨列车滚动轴承智能诊断的特征降维与随机森林方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2287-2293.
[7] 李洪雪,李世武,孙文财,李玮,郭梦竹. 重型危险品半挂列车行驶工况的构建[J]. 吉林大学学报(工学版), 2021, 51(5): 1700-1707.
[8] 武立群,张亮亮. 基于数据挖掘技术的桥梁结构健康状态检测[J]. 吉林大学学报(工学版), 2020, 50(2): 565-571.
[9] 鄢挺,杨林,陈亮. AMT换挡执行机构自适应智能控制策略[J]. 吉林大学学报(工学版), 2019, 49(5): 1441-1450.
[10] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[11] 张曼, 施树明. 典型汽车运行工况的状态转移特征分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1008-1015.
[12] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[13] 苏畅, 付黎明, 魏君, 李硕, 黄蕾, 曹越. 基于感性工学和主成分分析的车身色彩设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1414-1419.
[14] 马爽, 周长久, 张连东, 洪伟, 田彦涛. 基于Kinect改进的增量PCA扭锁在线识别[J]. 吉林大学学报(工学版), 2016, 46(3): 890-896.
[15] 齐兴达, 李显君, 刘丝雨, 孟东晖. 基于数据包络分析和主成分分析的产业技术创新能力差异化研究[J]. 吉林大学学报(工学版), 2015, 45(3): 1017-1023.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!