吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1849-1859.doi: 10.13229/j.cnki.jdxbgxb201406048

• • 上一篇    下一篇

有限离散剪切波域结合区域客观评价的图像融合

陈广秋1, 3, 高印寒2, 刘广文3, 孙俊喜3   

  1. 1.吉林大学 仪器科学与电气工程学院,长春130061;
    2.吉林大学 汽车仿真与控制国家重点实验室,长春130022;
    3.长春理工大学 电子信息工程学院,长春 130022
  • 收稿日期:2013-08-22 出版日期:2014-11-01 发布日期:2014-11-01
  • 作者简介:陈广秋(1977-),男,博士研究生.研究方向:图像配准与融合.E-mail:
  • 基金资助:
    高等学校博士学科点专项科研基金项目(20110061110059); 吉林省科技发展计划重点项目(20110326)

Image fusion based on area objective assessment in finite discrete shearlet transform domain

CHEN Guang-qiu1, 3, GAO Yin-han2, LIU Guang-wen3, SUN Jun-xi3   

  1. 1.College of Instrumentation & Electrical Engineering, Jilin University,Changchun 130061,China;
    2.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China;
    3.School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2013-08-22 Online:2014-11-01 Published:2014-11-01

摘要: 为了提升多源图像融合精度,提出了一种有限离散剪切波(FDST)域结合图像区域客观评价的自适应融合方法。该方法利用有限离散剪切波(FDST)对源图像进行多尺度、多方向分解,低频子带图像采用梯度信息相关性因子作为系数权值,高频子带图像应用绝对值与区域标准差一致性选择的融合策略。应用有限离散剪切波逆变换重构图像,采用多组多源图像进行融合试验,并对融合结果进行了客观评价。试验结果表明,本文提出的融合方法在主观和客观评价上均优于其他多尺度分解(MSD)融合方法。

关键词: 信息处理技术, 有限离散剪切波变换, 融合策略, 客观评价, 平移不变性

Abstract: To enhance the accuracy of multi-source image fusion, an adaptive fusion method is proposed. This method is based on the area objective assessment in Finite Discrete Shearlet Transform (FDST) domain. The source images are decomposed to subband images with multi-scale and multi-direction by FDST. The gradient information correlation factor is taken as the coefficient weight for low-frequency subband fusion; while for high-frequency subband, consistency selection of the coefficient absolute value and area standard deviation is adopted as the fusion rule. The fused low and high frequency coefficients are reconstructed to image by Finite Discrete Shearlet Inverse Transform (FDSIT). Fusion experiment is done with several sets of different modality images, and objective performance assessments of the fusion results are implemented. Results indicate that the proposed method performs better in subjective and objective assessments than other existing Multi-Scale Decomposition (MSD) fusion techniques.

Key words: information processing, finite discrete shearlet transform (FDST), fusion rule, objective assessment, shift-invariant

中图分类号: 

  • TP391.4
[1] 付朝阳,郭雷,常威威. 基于小波变换和多通道脉冲耦合神经网络的高光谱图像融合[J]. 吉林大学学报:工学版,2011,41(3):838-843. Fu Zhao-yang,Guo Lei, Chang Wei-wei. Fusion algorithm of hyperspectral images based on wavelet transform and multi-channel PCNN[J]. Journal of Jilin University (Engineering and Technology Edition), 2011,41(3):838-843.
[2] 孙明超,张崇,刘晶红. 多尺度图像增强可见光与红外图像融合[J]. 吉林大学学报:工学版,2012,42(3):738-742. Sun Ming-chao,Zhang Chong,Liu Jing-hong. Fusion of visible and infrared images based on multi-scale image enhancement[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(3):738-742.
[3] Candès E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Comm on Pure and Appl Math,2004,57(2):219-266.
[4] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans Image Proc,2005,14(12):2091-2106.
[5] 马苗, 万仁远, 尹义龙. 基于相似性灰关联的Curvelet域多聚焦图像融合[J]. 电子学报,2012,40(10):1984-1988. Ma Miao, Wan Ren-yuan, Yin Yi-long. Multi-focus image fusion based on grey relation of similarity in curvelet domain[J]. Acta Electronica Sinica, 2012,40(10):1984-1988.
[6] 路雅宁,郭雷,李晖晖. 结合边缘信息和图像特征信息的曲波域遥感图像融合[J]. 光子学报,2012,41(9): 1118-1123. Lu Ya-ning,Guo Lei,Li Hui-hui. Remote sensing image fusion using edge information and features of SAR image based on curvelet transform[J]. ACTA Photonic Sinica,2012,41(9): 1118-1123.
[7] 宋梦馨,郭平. 结合Contourlet和HSI变换的组合优化遥感图像融合方法[J]. 计算机辅助设计与图形学学报,2012,24(1):83-88. Song Meng-xin,Guo Ping. A combinatorial optimization method for remote sensing image fusion with contourlet and HIS transform[J]. Journal of Computer-Aided Design & Computer Graphics, 2012,24(1):83-88.
[8] 冯鹏,王静,魏彪,等. 一种基于Contourlet变换的GFP图像与相衬图像融合算法研究[J]. 光电子·激光,2013,24(1): 176-183. Feng Peng,Wang Jing,Wei Biao, et al. A fusion algorithim for GFP images and phase-contrast images based on Contourlet transform[J]. Journal of Optoelectronics·Laser,2013,24(1):176-183.
[9] Häuser S, Steidl G. Convex multiclass segmentation with shearlet regularization[J]. International Journal of Computer Mathematics,2013, 90(1):62-81.
[10] 牛晓晖,贾克斌. 基于 PCA 和自适应区域方差的图像融合方法[J]. 计算机应用研究,2010,27(8): 3179-3181. Niu Xiao-hui,Jia Ke-bin. Image fusion algorithm based on PCA & self-adaptive region variance[J]. Application Research of Computers, 2010,27(8):3179-3181.
[11] 王红梅, 陈励华, 李言俊, 等. 一种基于显著特征的图像融合算法[J]. 西北工业大学学报,2010,28(4):486-490. Wang Hong-mei, Chen Li-hua, Li Yan-jun, et al. A new and more effective image fusion algorithm based on salient feature[J]. Journal of Northwestern Polytechnical University, 2010,28(4):486-490.
[12] 易正俊,宋瑞晶,李华锋. 基于非采样 Contourlet 变换的图像融合算法[J]. 信号处理,2010, 26(6): 875-879. Yi Zheng-jun, Song Rui-jing, Li Hua-feng. Image fusion algorithm based on nonsubsampled contourlet transform[J]. Signal Processing, 2010, 26(6):875-879.
[13] Mertens T, Kautz J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009, 28(1): 161-171.
[14] 李俊山,杨威,张雄美. 红外图像处理、分析与融合[M]. 北京,科学出版社, 2009:203-205.
[15] 刘坤,郭雷,常威威. 基于Contourlet变换的区域特征自适应图像融合算法[J].光学学报,2008,28(4):681-686. Liu Kun, Guo Lei, Chang Wei-wei. Regional feature self-adaptive image fusion algorithm based on contourlet transform[J]. Acta Optica Sinica, 2008,28(4):681-686.
[16] 金星,李晖晖,时丕丽. 非下采样Contourlet变换与脉冲耦合神经网络相结合的SAR与多光谱图像融合[J]. 中国图象图形学报,2012,17(9):1188-1195. Jin Xing,Li Hui-hui,Shi Pi-li. SAR and multispectral image fusion algorithm based on pulse coupled neural networks and non-subsampled Contourlet transform[J]. Journal of Image and Graphics, 2012,17(9):1188-1195.
[17] Leung L W, King B, Vohora V. Comparison of image data fusion techniques using entropy and INI[C]∥Proc of 22nd Asian Conference on Remote Sensing, Singapore,2001,152-157.
[18] Qu Gui-hong, Zhang Da-li, Yan Pin-fan. Information measure for performance of image fusion[J]. Electronic Letters,2002,38(7):313-315.
[19] Xydeas C S, Petrovi V. Objective image fusion performance measure[J]. Electronics Letters, 2000,36(4):308-309.
[20] 曾立庆,蒋年德. 基于邻域内相关系数与平均梯度的图像融合方法[J]. 计算机工程与设计,2010,31(7):1533-1535. Zeng Li-qing,Jiang Nian-de. Image fusion based on correlation coefficient and average gradient[J]. Computer Engineering and Design, 2010,31(7):1533-1535.
[21] 王卫星,曾基兵. 冗余提升不可分离小波的图像融合方法[J]. 电子科技大学学报,2009,38(1):13-16. Wang Wei-xing, Zeng Ji-bing. Image fusion method based on redundant lifting non-separable wavelet transforms[J]. Journal of University of Electronic Science and Technology of China, 2009,38(1):13-16.
[22] 潘瑜, 王静, 孙权森, 等. 结合图像质量评价参数的多尺度分解融合策略[J]. 应用科学学报,2011,29(2):159-168. Pan Yu, Wang Jing, Sun Quan-sen, et al. Fusion strategy of multi-scale image decomposition combined with image quality evaluation[J]. Journal of Applied Sciences,2011,29(2):159-168.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!