吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1717-1723.doi: 10.13229/j.cnki.jdxbgxb201505048

• • 上一篇    下一篇

眼部特征自动检测定位方法

张超1, 卢韶芳2, 周付根1   

  1. 1.北京航空航天大学 宇航学院,北京 100191;
    2.吉林大学 通信工程学院,长春 130022
  • 收稿日期:2013-11-25 出版日期:2015-09-01 发布日期:2015-09-01
  • 通讯作者: 卢韶芳(1970-),女,副教授,博士.研究方向:生物信息处理及模式识别.E-mail:lusf@jlu.edu.cn
  • 作者简介:张超(1986-),男,博士研究生.研究方向:图像处理,模式识别.E-mail:zhangchao.101@163.com
  • 基金资助:
    吉林省科技发展计划项目(20090509); 吉林大学基本科研业务费项目

Automatic detection localization method of eye feature

ZHANG Chao1, LU Shao-fang2, ZHOU Fu-gen1   

  1. 1.School of Astronautics, Beihang University, Beijing 100191, China;
    2.College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2013-11-25 Online:2015-09-01 Published:2015-09-01

摘要: 为了准确地提取眼部特征,提出了一种人眼虹膜检测及眼角定位的新方法。首先用AdaBoost算法在复杂背景下识别人脸,再用方差积分投影方法提取眼睛区域。然后设计了可变形圆形模板,利用可变形圆形模板及改进的优化匹配函数来确定虹膜中心及计算虹膜半径,并在此基础上根据眼睛的结构特征,用设计的线形模板计算内外眼角相对虹膜中心的角度方向,并在该方向下用Harris角点检测算法确定眼角最佳位置。最后,利用IMM人脸库验证了本方法,实验结果表明:本方法可以很好地对面部图像中的人眼虹膜及内外眼角进行准确定位。

关键词: 信息处理技术, 人脸识别, 可变形模板, 虹膜定位, 眼角检测

Abstract: In order to extract eye feature accurately, a novel automatic detection localization method of iris and canthus is proposed. First, the face is recognized in a complicated background by using AdaBoost algorithm. Variance integral projection is used to extract eye area. Then, the deformation circular template and the improved optimization matching function are designed to locate the center of the iris and to calculate the iris radius. On this basis, according to the characteristics of the eye structure, both inner and outer canthus direction is calculated using linear template, which is relative to the center of the iris, and then Harris corner detection algorithm is used to set canthus best position along this direction. Finally, this method is validated by IMM face library, and the experimental results show that this method can locate the human iris and inner and outer canthus accurately.

Key words: information processing technology, face recognition, deformable template, iris location, canthus detection

中图分类号: 

  • TN911
[1] 冯建强,刘文波,于盛林. 基于灰度积分投影的人眼定位[J].计算机仿真,2005, 22(4):75-76. Feng Jian-qiang, Liu Wen-bo, Yu Sheng-lin. Eyes location based on gray-level integration projection[J]. Computer Simulation, 2005, 22(4): 75-76.
[2] Li Xue, He Li-qiang. The implementation of eye location using adaboost and harris algorithm[C]∥2010 International Conference on Management Science and Engineering (MSE2010),Wuhan,China,2010: 462-463.
[3] Zhang Bai-zhen Ruan Qiu-qi. Facial feature extraction using improved deformable templates[C]∥2006 8th International Conference on Signal Processing, Beijing,2006: 4.
[4] 李亚利,王生进,胡斌,等. 基于改进型抛物线Hough变换的眼睛特征提取[J].清华大学学报:自然科学版,2010,50(1):100-103. Li Ya-li, Wang Sheng-jin, Hu Bin, et al. Eye feature extracti on based on modified parabolic Hough transforms[J]. Journal of Tsinghua University (Science and Technology), 2010, 50 (1): 100-103.
[5] Hamouz M, Kittler J, Kamarainen J K, et al. Feature-based affine-invariant localization of faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9): 1490-1495.
[6] Madhuranath H, Babu T R, Subrahmanya S V. Modified Adaboost method for efficient face detection[C]∥2012 12th International Conference on Hybrid Intelligent Systems(HIS), Pune,2012: 415-420.
[7] 史东承,郑超.基于相位的人眼状态检测[J].吉林大学学报:工学版,2013,43(增刊):265-269. Shi Dong-cheng, Zheng Chao. Eye states detection algorithm based on phase information[J]. Journal of Jilin University of Technology(Engineering and Technology Edition), 2013, 43(Sup.): 265-269.
[8] 夏海英,严国萍,王标. 加权方差投影在眼角定位中的应用[J].中国图象图形学报,2011,16 (2):273-277. Xia Hai-ying, Yan Guo-ping, Wang Biao. Weighted variance projection for eye corner location[J]. Journal of Image and Graphics, 2011, 16(2): 273-277.
[9] Das A, Ghoshal D. Human eye detection of color images based on morphological segmentation using modified harris comer detector[C]∥2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM),Chennai,2012: 143-147.
[10] Jesorsky O, Kirchberg K J, Frishchholz R. Robust face detection using the Hausdorff distance[C]∥Proceedings of the Thrid Internation Conference on Audio and Video based Biometric Person Authentication,Halmstad,Sweden,2001: 90-95.
[11] Wildes R P. Iris recognition: An emerging biometric technology[J]. Proceedings of the IEEE, 1997, 85(9): 1348-1363.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!